2022-2023學年廣東省佛山市樂從鎮(zhèn)九年級數(shù)學第一學期期末考試模擬試題含解析_第1頁
2022-2023學年廣東省佛山市樂從鎮(zhèn)九年級數(shù)學第一學期期末考試模擬試題含解析_第2頁
2022-2023學年廣東省佛山市樂從鎮(zhèn)九年級數(shù)學第一學期期末考試模擬試題含解析_第3頁
2022-2023學年廣東省佛山市樂從鎮(zhèn)九年級數(shù)學第一學期期末考試模擬試題含解析_第4頁
2022-2023學年廣東省佛山市樂從鎮(zhèn)九年級數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.拋物線可以由拋物線平移得到,下列平移正確的是()A.先向左平移3個單位長度,然后向上平移1個單位B.先向左平移3個單位長度,然后向下平移1個單位C.先向右平移3個單位長度,然后向上平移1個單位D.先向右平移3個單位長度,然后向下平移1個單位2.如圖(1)所示,為矩形的邊上一點,動點,同時從點出發(fā),點沿折線運動到點時停止,點沿運動到點時停止,它們運動的速度都是秒,設、同時出發(fā)秒時,的面積為.已知與的函數(shù)關系圖象如圖(2)(曲線為拋物線的一部分)則下列結論正確的是()圖(1)圖(2)A. B.當是等邊三角形時,秒C.當時,秒 D.當?shù)拿娣e為時,的值是或秒3.若反比例函數(shù)y=的圖象經(jīng)過點(3,1),則它的圖象也一定經(jīng)過的點是()A.(﹣3,1) B.(3,﹣1) C.(1,﹣3) D.(﹣1,﹣3)4.中,,,,的值為()A. B. C. D.25.如圖,正方形AEFG的邊AE放置在正方形ABCD的對角線AC上,EF與CD交于點M,得四邊形AEMD,且兩正方形的邊長均為2,則兩正方形重合部分(陰影部分)的面積為()A.﹣4+4 B.4+4 C.8﹣4 D.+16.如圖,過反比例函數(shù)(x>0)的圖象上任意兩點A、B分別作x軸的垂線,垂足分別為C、D,連接OA、OB,設△AOC和△BOD的面積分別是S1、S2,比較它們的大小,可得()A.S1>S2 B.S1=S2 C.S1<S2 D.大小關系不能確定7.如圖,小明為了測量一涼亭的高度AB(頂端A到水平地面BD的距離),在涼亭的旁邊放置一個與涼亭臺階BC等高的臺階DE(,A,C,B三點共線),把一面鏡子水平放置在平臺上的點G處,測得,然后沿直線后退到點E處,這時在鏡子里恰好看到?jīng)鐾さ捻敹薃,測得.若小明身高1.6m,則涼亭的高度AB約為()A.2.5m B.9m C.9.5m D.10m8.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,點E在邊CD的延長線上,若∠ABC=110°,則∠ADE的度數(shù)為()A.55° B.70° C.90° D.110°9.當壓力F(N)一定時,物體所受的壓強p(Pa)與受力面積S(m2)的函數(shù)關系式為P=(S≠0),這個函數(shù)的圖象大致是()A. B.C. D.10.若反比例函數(shù)的圖象上有兩點P1(1,y1)和P2(2,y2),那么()A.y1>y2>0 B.y2>y1>0 C.y1<y2<0 D.y2<y1<011.拋物線y=(x﹣2)2﹣1可以由拋物線y=x2平移而得到,下列平移正確的是()A.先向左平移2個單位長度,然后向上平移1個單位長度B.先向左平移2個單位長度,然后向下平移1個單位長度C.先向右平移2個單位長度,然后向上平移1個單位長度D.先向右平移2個單位長度,然后向下平移1個單位長度12.如圖,是正方形與正六邊形的外接圓.則正方形與正六邊形的周長之比為()A. B. C. D.二、填空題(每題4分,共24分)13.某種傳染病,若有一人感染,經(jīng)過兩輪傳染后將共有49人感染.設這種傳染病每輪傳染中平均一個人傳染了x個人,列出方程為______.14.方程x2+2x﹣1=0配方得到(x+m)2=2,則m=_____.15.在如圖所示的幾何體中,其三視圖中有三角形的是______(填序號).16.在Rt△ABC中,∠C是直角,sinA=,則cosB=__________17.已知二次函數(shù),與的部分對應值如下表所示:…-101234……61-2-3-2m…下面有四個論斷:①拋物線的頂點為;②;③關于的方程的解為;④.其中,正確的有___________________.18.如圖,三個頂點的坐標分別為,以原點O為位似中心,把這個三角形縮小為原來的,可以得到,已知點的坐標是,則點的坐標是______.三、解答題(共78分)19.(8分)一位同學想利用樹影測量樹高,他在某一時間測得長為1m的竹竿影長0.8m,但當他馬上測量樹影時,因樹靠近一幢建筑物,影子不完全落在地面上,有一部分影子在墻上,如圖所示,他先測得留在墻上的影高為1.2m,又測得地面部分的影長為5m,測算一下這棵樹的高時多少?20.(8分)如圖,在中,分別是的中點,,連接交于點.(1)求證:;(2)過點作于點,交于點,若,求的長.21.(8分)如圖,在某廣場上空飄著一只氣球P,A、B是地面上相距90米的兩點,它們分別在氣球的正西和正東,測得仰角∠PAB=45°,仰角∠PBA=30°,求氣球P的高度(精確到0.1米).22.(10分)如圖,正方形ABCD的邊長為2,點E是AD邊上的動點,從點A開始沿AD向D運動.以BE為邊,在BE的上方作正方形BEFG,EF交DC于點H,連接CG、BH.請?zhí)骄浚海?)線段AE與CG是否相等?請說明理由.(2)若設AE=x,DH=y,當x取何值時,y最大?最大值是多少?(3)當點E運動到AD的何位置時,△BEH∽△BAE?23.(10分)如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一點,且BD=CD,G是BC邊上的一動點,GE∥AD分別交直線AC,AB于F,E兩點.(1)AD=;(2)如圖1,當GF=1時,求的值;(3)如圖2,隨點G位置的改變,F(xiàn)G+EG是否為一個定值?如果是,求出這個定值,如果不是,請說明理由.24.(10分)已知如圖,拋物線y=ax2+bx+3與x軸交于點A(3,0),B(﹣1,0),與y軸交于點C,連接AC,點P是直線AC上方的拋物線上一動點(異于點A,C),過點P作PE⊥x軸,垂足為E,PE與AC相交于點D,連接AP.(1)求點C的坐標;(2)求拋物線的解析式;(3)①求直線AC的解析式;②是否存在點P,使得△PAD的面積等于△DAE的面積,若存在,求出點P的坐標,若不存在,請說明理由.25.(12分)某校為了普及推廣冰雪活動進校園,準備購進速滑冰鞋和花滑冰鞋用于開展冰上運動,若購進30雙速滑冰鞋和20雙花滑冰鞋共需8500元;若購進40雙速滑冰鞋和10雙花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每雙購進價格分別為多少元?(2)若該校購進花滑冰鞋的數(shù)量比購進速滑冰鞋數(shù)量的2倍少10雙,且用于購置兩種冰鞋的總經(jīng)費不超過9000元,則該校至多購進速滑冰鞋多少雙?26.(1)計算:|﹣2|+(π﹣3)1+2sin61°.(2)解下列方程:x2﹣3x﹣1=1.

參考答案一、選擇題(每題4分,共48分)1、B【分析】拋物線平移問題可以以平移前后兩個解析式的頂點坐標為基準研究.【詳解】解:拋物線的頂點為(0,0),拋物線的頂點為(-3,-1),拋物線向左平移3個單位長度,然后向下平移1個單位得到拋物線.故選:B.【點睛】本題考查的知識點是二次函數(shù)圖象平移問題,解答是最簡單的方法是確定平移前后拋物線頂點,從而確定平移方向.2、D【分析】先根據(jù)圖象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判斷出∠EBC≠60°,從而得出點P可能在ED上時,△PBQ是等邊三角形,但必須是AD的中點,而AE>ED,所以點P不可能到AD中點的位置,故△PBQ不可能是等邊三角形;C、利用相似三角形性質列出方程解決,分兩種情況討論計算即可,D、分點P在BE上和點P在CD上兩種情況計算即可.【詳解】由圖象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A錯誤,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴點P在ED時,有可能△PBQ是等邊三角形,∵BE=BC,∴點P到點E時,點Q到點C,∴點P在線段AD中點時,有可能△PBQ是等邊三角形,∵AE>DE,∴點P不可能到AD的中點,∴△PBQ不可能是等邊三角形,故B錯誤,C、∵△ABE∽△QBP,∴點E只有在CD上,且滿足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4?)=.故C錯誤,D、①如圖(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=?(舍)或t=,②當點P在CD上時,S△BPQ=×BC×PC=×5×(5+2+4?t)=×(11?t)=4,∴t=,∴當△BPQ的面積為4cm2時,t的值是或秒,故D正確,故選:D.【點睛】此題是二次函數(shù)綜合題,主要考查動點問題的函數(shù)圖象、矩形的性質、三角形的面積公式等知識.解題的關鍵是讀懂圖象信息求出相應的線段,學會轉化的思想,把問題轉化為方程的思想解決,屬于中考常考題型..3、D【分析】由反比例函數(shù)y=的圖象經(jīng)過點(3,1),可求反比例函數(shù)解析式,把點代入解析式即可求解.【詳解】∵反比例函數(shù)y=的圖象經(jīng)過點(3,1),∴y=,把點一一代入,發(fā)現(xiàn)只有(﹣1,﹣3)符合.故選D.【點睛】本題運用了待定系數(shù)法求反比例函數(shù)解析式的知識點,然后判斷點是否在反比例函數(shù)的圖象上.4、C【分析】根據(jù)勾股定理求出斜邊AB的值,在利用余弦的定義直接計算即可.【詳解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=,∴==,故選:C.【點睛】本題主要考查銳角三角函數(shù)的定義,解決此類題時,要注意前提條件是在直角三角形中,此外還有熟記三角函數(shù)是定義.5、A【解析】試題分析:∵四邊形ABCD是正方形,∴∠D=90°,∠ACD=15°,AD=CD=2,則S△ACD=AD?CD=×2×2=2;AC=AD=2,則EC=2﹣2,∵△MEC是等腰直角三角形,∴S△MEC=ME?EC=(2﹣2)2=6﹣1,∴陰影部分的面積=S△ACD﹣S△MEC=2﹣(6﹣1)=1﹣1.故選A.考點:正方形的性質.6、B【分析】根據(jù)反比例函數(shù)的幾何意義,直接求出S1、S1的值即可進行比較.【詳解】由于A、B均在反比例函數(shù)的圖象上,且AC⊥x軸,BD⊥x軸,則S1=;S1=.故S1=S1.故選:B.【點睛】此題考查了反比例函數(shù)k的幾何意義,找到相關三角形,求出k的絕對值的一半即為三角形的面積.7、A【分析】根據(jù)光線反射角等于入射角可得,根據(jù)可證明,根據(jù)相似三角形的性質可求出AC的長,進而求出AB的長即可.【詳解】∵光線反射角等于入射角,∴,∵,∴,∴,∴,∴,∴.故選A.【點睛】本題考查相似三角形的應用,如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;如果兩個三角形的兩組對應邊的比相等,并且對應的夾角相等,那么這兩個三角形相似;如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;平行于三角形一邊的直線和其它兩邊相交,所構成的三角形與原三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.熟練掌握相似三角形的判定定理是解題關鍵.8、D【解析】∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠ADE=180°,∴∠ADE=∠ABC=110°.故選D.點睛:本題是一道考查圓內(nèi)接四邊形性質的題,解題的關鍵是知道圓內(nèi)接四邊形的性質:“圓內(nèi)接四邊形對角互補”.9、C【分析】根據(jù)實際意義以及函數(shù)的解析式,根據(jù)函數(shù)的類型,以及自變量的取值范圍即可進行判斷.【詳解】解:當F一定時,P與S之間成反比例函數(shù),則函數(shù)圖象是雙曲線,同時自變量是正數(shù).故選:C.【點睛】此題主要考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.10、A【詳解】∵點P1(1,y1)和P2(2,y2)在反比例函數(shù)的圖象上,∴y1=1,y2=,∴y1>y2>1.故選A.11、D【解析】分析:拋物線平移問題可以以平移前后兩個解析式的頂點坐標為基準研究.詳解:拋物線y=x2頂點為(0,0),拋物線y=(x﹣2)2﹣1的頂點為(2,﹣1),則拋物線y=x2向右平移2個單位,向下平移1個單位得到拋物線y=(x﹣2)2﹣1的圖象.故選D.點睛:本題考查二次函數(shù)圖象平移問題,解答時最簡單方法是確定平移前后的拋物線頂點,從而確定平移方向.12、A【解析】計算出在半徑為R的圓中,內(nèi)接正方形和內(nèi)接正六邊形的邊長即可求出周長之間的關系;【詳解】設此圓的半徑為R,

則它的內(nèi)接正方形的邊長為,

它的內(nèi)接正六邊形的邊長為R,

內(nèi)接正方形和外切正六邊形的邊長比為R:R=:1.正方形與正六邊形的周長之比=:6=

故答案選:A;【點睛】考查了正多邊形和圓,解決圓的相關問題一定要結合圖形,掌握基本的圖形變換.找出內(nèi)接正方形與內(nèi)接正六邊形的邊長關系,是解決問題的關鍵.二、填空題(每題4分,共24分)13、x(x+1)+x+1=1.【分析】設每輪傳染中平均一人傳染x人,那么經(jīng)過第一輪傳染后有x人被感染,那么經(jīng)過兩輪傳染后有x(x+1)+x+1人感染,列出方程即可.【詳解】解:設每輪傳染中平均一人傳染x人,則第一輪后有x+1人感染,第二輪后有x(x+1)+x+1人感染,由題意得:x(x+1)+x+1=1.故答案為:x(x+1)+x+1=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,掌握一元二次方程是解題的關鍵.14、1【解析】試題解析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,則m=1;故答案為1.15、①【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形,據(jù)此【詳解】解:圓錐的主視圖、左視圖是等腰三角形,俯視圖是帶有圓心的圓,長方體主視圖,左視圖,俯視圖都是矩形,

圓柱體的主視圖是矩形,左視圖是矩形,俯視圖是圓,所以三視圖中有三角形的是①.故答案為①【點睛】本題主要考查三視圖的知識,熟練掌握常見幾何體的三視圖是解題的關鍵.16、【分析】由題意直接運用直角三角形的邊角間關系進行分析計算即可求解得出結論.【詳解】解:如圖,解:在Rt△ABC中,∵∠C是直角,∴,又∵,∴.【點睛】本題考查直角三角形的邊角關系,熟練掌握正弦和余弦所對應的邊角關系是解題的關鍵.17、①③.【解析】根據(jù)圖表求出函數(shù)對稱軸,再根據(jù)圖表信息和二次函數(shù)性質逐一判斷即可.【詳解】由二次函數(shù)y=ax2+bx+c(a≠0),y與x的部分對應值可知:該函數(shù)圖象是開口向上的拋物線,對稱軸是直線x=2,頂點坐標為(2,-3);與x軸有兩個交點,一個在0與1之間,另一個在3與4之間;當y=-2時,x=1或x=3;由拋物線的對稱性可知,m=1;①拋物線y=ax2+bx+c(a≠0)的頂點為(2,-3),結論正確;②b2﹣4ac=0,結論錯誤,應該是b2﹣4ac>0;③關于x的方程ax2+bx+c=﹣2的解為x1=1,x2=3,結論正確;④m=﹣3,結論錯誤,其中,正確的有.①③故答案為:①③【點睛】本題考查了二次函數(shù)的圖像,結合圖表信息是解題的關鍵.18、(1,2)【解析】解:∵點A的坐標為(2,4),以原點O為位似中心,把這個三角形縮小為原來的,∴點A′的坐標是(2×,4×),即(1,2).故答案為(1,2).三、解答題(共78分)19、樹高為7.45米【分析】先求出墻上的影高CD落在地面上時的長度,再設樹高為h,根據(jù)同一時刻物高與影長成正比列出關系式求出h的值即可.【詳解】設墻上的影高CD落在地面上時的長度為xm,樹高為hm,∵某一時刻測得長為1m的竹竿影長為0.8m,墻上的影高CD為1.2m,∴,解得x=0.96,∴樹的影長為:0.96+5=5.96(m),∴,解得h=7.45(m).∴樹高為7.45米.【點睛】本題考查了相似三角形的應用,解答此題的關鍵是正確求出樹的影長,這是此題的易錯點.20、(1)見解析;(2)AN的長為2.【分析】(1)利用平行四邊形的性質及中點的性質即可證得結論;(2)先判定四邊形CDMN是平行四邊形,再判斷其為菱形,利用菱形的性質,判斷△MNC為等邊三角形,從而求得∠1=∠2=∠MND=30°,在中,利用特殊角,求出EN,進而求出線段AN的長.【詳解】(1)在平行四邊形ABCD中,∠B=∠ADC,AB=CD,∵M,N分別是AD,BC的中點,∴BN=BC=AD=DM,∴△ABN≌△CDM;(2)∵在平行四邊形ABCD中,M,N分別是AD,BC的中點,∴,,∴四邊形CDMN為平行四邊形,∵在中,M為AD中點,∴MN=MD,∴平行四邊形CDMN為菱形;∴∠MND=∠DNC=∠1=∠2,∵CE⊥MN,∠MND+∠DNC+∠2=90°,∴∠MND=∠DNC=∠2=30°,在中,∵PE=1,∠ENP=30°,∴EN=,在中,∵EN=,∠2=30°,NC=2EN=2,∵∠MNC=∠MND+∠DNC=60°,∴△MNC為等邊三角形,又由(1)可得,MC=AN,∴AN=MC=NC=2,∴AN的長為2.【點睛】本題是四邊形的綜合題,考查了平行四邊形的性質和判定、菱形的判定與性質、直角三角形的斜邊中線與斜邊的關系、等邊三角形的性質和判定以及相似三角形的性質和判定,利用直角三角形中30°的角所對的直角邊等于斜邊的一半是求解的關鍵.21、氣球P的高度約是32.9米.【分析】過點P作PC⊥AB于C點,由PC及∠A、∠B的正切值表示出AB,即AB=,求得PC即可.【詳解】過點P作PC⊥AB于C,設PC=x米,在Rt△PAC中,∠PAB=45°,∴AC="PC"=x米,在Rt△PBC中,∠PBA=30°,∵tan∠PBA=,∴(米)又∵AB=90米,∴AB=AC+CB=米∴≈32.9(米),答:氣球P的高度約是32.9米.22、(1)AE=CG,見解析;(2)當x=1時,y有最大值,為;(3)當E點是AD的中點時,△BEH∽△BAE,見解析.【解析】(1)由正方形的性質可得AB=BC,BE=BG,∠ABC=∠EBG=90°,由“SAS”可證△ABE≌△CBG,可得AE=CG;(2)由正方形的性質可得∠A=∠D=∠FEB=90°,由余角的性質可得∠ABE=∠DEH,可得△ABE∽△DEH,可得,由二次函數(shù)的性質可求最大值;(3)當E點是AD的中點時,可得AE=1,DH=,可得,且∠A=∠FEB=90°,即可證△BEH∽△BAE.【詳解】(1)AE=CG,理由如下:∵四邊形ABCD,四邊形BEFG是正方形,∴AB=BC,BE=BG,∠ABC=∠EBG=90°,∴∠ABE=∠CBG,且AB=BC,BE=BG,∴△ABE≌△CBG(SAS),∴AE=CG;(2)∵四邊形ABCD,四邊形BEFG是正方形,∴∠A=∠D=∠FEB=90°,∴∠AEB+∠ABE=90°,∠AEB+∠DEH=90°,∴∠ABE=∠DEH,又∵∠A=∠D,∴△ABE∽△DEH,∴,∴∴=,∴當x=1時,y有最大值為;(3)當E點是AD的中點時,△BEH∽△BAE,理由如下:∵E是AD中點,∴AE=1,∴又∵△ABE∽△DEH,∴,又∵,∴,且∠DAB=∠FEB=90°,∴△BEH∽△BAE.【點睛】本題是相似形綜合題,考查了相似三角形的判定和性質,正方形的性質,二次函數(shù)的性質,靈活運用這些性質進行推理是本題的關鍵.23、(1)AD=;(2);(3)FG+EG是一個定值,為.【分析】(1)先由勾股定理求出BC的長,再由直角三角形斜邊中線的性質可求出AD的長;(2)先證FG=CG=1,通過BD=CDBC=AD,求出BG的長,再證△BGE∽△BDA,利用相似三角形的性質可求出的值;(3)由(2)知FG=CG,再證EG=BG,即可證FG+EG=BC=2.【詳解】(1)∵∠BAC=90°,且BD=CD,∴ADBC.∵BC2,∴AD2.故答案為:;(2)如圖1.∵GF∥AD,∴∠CFG=∠CAD.∵BD=CDBC=AD,∴∠CAD=∠C,∴∠CFG=∠C,∴CG=FG=1,∴BG=21.∵AD∥GE,∴△BGE∽△BDA,∴;(3)如圖2,隨點G位置的改變,F(xiàn)G+EG是一個定值.理由如下:∵ADBC=BD,∴∠B=∠BAD.∵AD∥EG,∴∠BAD=∠E,∴∠B=∠E,∴EG=BG,由(2)知,GF=GC,∴EG+FG=BG+CG=BC=2,∴FG+EG是一個定值,為2.【點睛】本題考查了直角三角形的性質,相似三角形的判定與性質等,解題的關鍵是能夠靈活運用相似三角形的判定與性質.24、(1)(0,3);(2)y=﹣x2+2x+3;(3)①;②當點P的坐標為(1,4)時,△PAD的面積等于△DAE的面積.【分析】(1)將代入二次函數(shù)解析式即可得點C的坐標;(2)把A(3,0),B(﹣1,0)代入y=ax2+bx+3即可得出拋物線的解析式;(3)①設直線直線AC的解析式為,把A(3,0),C代入即可得直線AC的解析式;②存在點P,使得△PAD的面積等于△DAE的面積;設點P(x,﹣x2+2x+3)則點D(x,﹣x+3),可得PD=﹣x2+2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論