2023屆江西上饒橫峰高考壓軸卷數(shù)學試卷含解析_第1頁
2023屆江西上饒橫峰高考壓軸卷數(shù)學試卷含解析_第2頁
2023屆江西上饒橫峰高考壓軸卷數(shù)學試卷含解析_第3頁
2023屆江西上饒橫峰高考壓軸卷數(shù)學試卷含解析_第4頁
2023屆江西上饒橫峰高考壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.2.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.3.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.4.設i為虛數(shù)單位,若復數(shù),則復數(shù)z等于()A. B. C. D.05.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.6.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.7.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.4008.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿足()A. B. C. D.9.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.10.已知,,則的大小關系為()A. B. C. D.11.在復平面內(nèi),復數(shù)(為虛數(shù)單位)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個單位后得到的函數(shù)圖象關于直線x=對稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)二、填空題:本題共4小題,每小題5分,共20分。13.三所學校舉行高三聯(lián)考,三所學校參加聯(lián)考的人數(shù)分別為160,240,400,為調(diào)查聯(lián)考數(shù)學學科的成績,現(xiàn)采用分層抽樣的方法在這三所學校中抽取樣本,若在學校抽取的數(shù)學成績的份數(shù)為30,則抽取的樣本容量為____________.14.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數(shù)字作答).15.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個函數(shù)是________.16.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數(shù)為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).其中是自然對數(shù)的底數(shù).(1)求函數(shù)在點處的切線方程;(2)若不等式對任意的恒成立,求實數(shù)的取值范圍.18.(12分)已知拋物線E:y2=2px(p>0),焦點F到準線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.19.(12分)已知圓O經(jīng)過橢圓C:的兩個焦點以及兩個頂點,且點在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點,且,求直線l的傾斜角.20.(12分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.21.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大??;(2)求點到平面的距離.22.(10分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側(cè))滿足,且的周長為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.2.B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.3.C【解析】

分析函數(shù)的定義域和單調(diào)性,然后對選項逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎題.4.B【解析】

根據(jù)復數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復數(shù)的代數(shù)運算,屬于基礎題.5.B【解析】

設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結(jié)合的面積求得的值,結(jié)合焦點弦長公式可求得.【詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.6.A【解析】

設出A,B的坐標,利用導數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據(jù)得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.7.B【解析】

設公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設公差為,,,,.故選:B.【點睛】本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎題.8.D【解析】

首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應找一個中間數(shù),通過它實現(xiàn)大小關系的傳遞,屬于中檔題.9.A【解析】

根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.10.D【解析】

由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最??;而由對數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.11.C【解析】

化簡復數(shù)為、的形式,可以確定對應的點位于的象限.【詳解】解:復數(shù)故復數(shù)對應的坐標為位于第三象限故選:.【點睛】本題考查復數(shù)代數(shù)形式的運算,復數(shù)和復平面內(nèi)點的對應關系,屬于基礎題.12.D【解析】

由函數(shù)的周期求得,再由平移后的函數(shù)圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因為函數(shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個單位后,得到圖像所對應的函數(shù)解析式為,由此函數(shù)圖像關于直線對稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)三角函數(shù)的性質(zhì)求解是解答的關鍵,著重考查了推理與運算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

某層抽取的人數(shù)等于該層的總?cè)藬?shù)乘以抽樣比.【詳解】設抽取的樣本容量為x,由已知,,解得.故答案為:【點睛】本題考查隨機抽樣中的分層抽樣,考查學生基本的運算能力,是一道容易題.14.1296【解析】

先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應用,考查了學生應用數(shù)學解決實際問題的能力.15.答案不唯一,如【解析】

根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設,則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點睛】本題考查對基本初等函數(shù)的圖像和性質(zhì)的理解,關鍵是假設出一個在上不是單調(diào)遞減的函數(shù),再檢驗是否滿足命題中的條件,屬基礎題.16.1【解析】

直接根據(jù)分層抽樣的比例關系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學生的人數(shù)為6001.故答案為:1.【點睛】本題考查了分層抽樣的計算,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)利用導數(shù)的幾何意義求出切線的斜率,再求出切點坐標即可得在點處的切線方程;(2)令,然后利用導數(shù)并根據(jù)a的情況研究函數(shù)的單調(diào)性和最值.【詳解】(1),,∴,又,∴切線方程為,即.(2)令,,①若,則在上單調(diào)遞減,又,∴恒成立,∴在上單調(diào)遞減,又,∴恒成立.②若,令,∴,易知與在上單調(diào)遞減,∴在上單調(diào)遞減,,當即時,在上恒成立,∴在上單調(diào)遞減,即在上單調(diào)遞減,又,∴恒成立,∴在上單調(diào)遞減,又,∴恒成立,當即時,使,∴在遞增,此時,∴,∴在遞增,∴,不合題意.綜上,實數(shù)的取值范圍是.【點睛】本題主要考查導數(shù)的幾何意義及構(gòu)造函數(shù)解決含參數(shù)的不等式恒成立時求參數(shù)的取值范圍問題,第二問的難點是構(gòu)造函數(shù)后二次求導問題,對分類討論思想及化歸與等價轉(zhuǎn)化思想要求較高,難度較大,屬拔高題.18.(1)y2=6x(2).【解析】

(1)根據(jù)拋物線定義,寫出焦點坐標和準線方程,列方程即可得解;(2)根據(jù)中點坐標表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點F(,0)到準線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當且僅當9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時等號成立,所以S△ABC的最大值為.【點睛】此題考查根據(jù)焦點和準線關系求拋物線方程,根據(jù)直線與拋物線位置關系求解三角形面積的最值,表示三角形的面積關系常涉及韋達定理整體代入,拋物線中需要考慮設點坐標的技巧,處理最值問題常用函數(shù)單調(diào)性求解或均值不等式求最值.19.(1);(2)或【解析】

(1)先由題意得出,可得出與的等量關系,然后將點的坐標代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對直線的斜率是否存在進行分類討論,當直線的斜率不存在時,可求出,然后進行檢驗;當直線的斜率存在時,可設直線的方程為,設點,先由直線與圓相切得出與之間的關系,再將直線的方程與橢圓的方程聯(lián)立,由韋達定理,利用弦長公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過橢圓的上下頂點,所以橢圓焦距等于短軸長,可得,又點在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當直線不存在斜率時,解得,不符合題意;當直線存在斜率時,設其方程為,因為直線與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,設,則,所以,解得,所以直線的傾斜角為或.【點睛】求橢圓標準方程的方法一般為待定系數(shù)法,根據(jù)條件確定關于的方程組,解出,從而寫出橢圓的標準方程.解決直線與橢圓的位置關系的相關問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應用根與系數(shù)的關系建立方程,解決相關問題.涉及弦中點的問題常常用“點差法”解決,往往會更簡單.20.(1);(2)【解析】

(1)分析可得必在橢圓上,不在橢圓上,代入即得解;(2)設直線PA,PB的傾斜角分別為,斜率為,可得.則,,利用均值不等式,即得解.【詳解】(1)因為關于軸對稱,所以必在橢圓上,∴不在橢圓上∴,,即.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論