版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
參考文獻參考文獻[1]何一鳴.電子技術(shù)基礎(chǔ)教程[M].北京:電子工業(yè)出版社,2006,6.138-227.[2]張金.電子設(shè)計工程師之路[M].北京:電子工業(yè)出版社,2014.[3]王傘.常用電路模塊分析與設(shè)計指導(dǎo)第2版[M].北京:清華大學(xué)出版社,2007.[4]黃繼昌.數(shù)字集成電路應(yīng)用300例[M].北京:人民郵電出版社,2004.[5]康華光.電子技術(shù)基礎(chǔ)(數(shù)字部分)[M].北京:高等教育出版社,1999.[6]臧春華.電子線路設(shè)計及應(yīng)用[M].北京:高等教育出版社,2004.[7]王永華.數(shù)字邏輯與數(shù)字系統(tǒng)[M].北京:電子工業(yè)出版社,2006,7.[8]胡翔駿.電路基礎(chǔ)簡明教程[M].北京:高等教育出版社,2004.[9]胡宴如.模擬電子技術(shù)[第二版M].北京:高等教育出版社,2004.[10]陳曉文.電子線路課程設(shè)計[M].北京:電子工業(yè)出版社,2004.
[11]楊志忠.數(shù)字電子技術(shù)第二版[M].北京:高等教育出版社,2003.[12]廖先蕓.電子技術(shù)實踐與訓(xùn)練[M].北京:高等教育出版社,2004.
[13]閻有運.電子技術(shù)實踐教程[M].北京:中國礦大出版社,2007.[14]Harris,D.M.DigitalDesignandComputerArchitecture[M].2009,5.[15]Scherz,P.PracticalElectronicsforInventors[M].2014,4
附錄1電氣原理圖附錄2附錄2PCB版圖外文翻譯外文翻譯原文:MeasurementofTransmissionLineParametersfromSCADADataG.L.KusicandD.L.GarrisonAbstract--Transmissionlineequivalentcircuitparametersareoften25%to30%inerrorcomparedtovaluesmeasuredbytheSCADAsystem.Theseerrorscausetheeconomicdispatchtobewrong,andleadtoincreasedcostsorincorrectbilling.Theparametererrorsalsoaffectcontingencyanalysis,shortcircuitanalysis,distancerelaying,machinestabilitycalculations,transmissionplanning,andStateEstimatorAnalysis.Aneconomicexampleisusedtodemonstratetheaffectoftransmissionlineerrors.SCADAmeasurementsfromseveralutilitiesareusedtocomputethe‘realworld’valueofthetransmissionlineparameters.StateEstimationwiththeestimatedparametersiscomparedtothecomputationsusingthetheoreticalvalues.IndexTerms—SCADAMeasurements,StateEstimation,TransmissionLineParameterEstimationI.INTRODUCTIONUtilitiesinmostinstancesusetheoreticalvaluesforlineparameterscalculatedfromideallinegeometrysuchasheightofconductoraboveflat,constantresistanceearth.Earthresistivityisvariablewithterrain.Conductorsageffectsareimpossibletoestimateoverhillyterrain.Usuallyshieldwiresaregroundedateachtowerinsteadoffloatingovertheentirelinelength.Lineresistancevarieswithcurrent,theambienttemperatureandwindeffects.Anoutageisrequiredtomeasurethelinechargingequivalentcapacitance,onlyifone-sidedexcitationdoesnotcausetoomuchvoltageriseontheopen-circuitend.Constructionofnewparallellineswithmutualcoupling,affectsolddatabasevalues.Theseriesreactanceofatransmissionlineisrarelymeasured,sothevalueusedisforanideallytransposedline.Linesarenottransposedbecauseoftheaddedconstructioncosttomechanicallyalterpositionsoftheconductorswithrespecttothesupportpolesevery1/3thedistance.Withallofthesevariationsfromidealconditions,andfewrealmeasurements,utilitiesoftenhaveasmuchas25%to30%errorintheirdatabaseparameterscomparedtothe'realworld'values.UtilitiesuseMWandMVARmeteringforrevenue.Transmissionlinelossesareusuallylessthan3%ofthetotalgeneration.However,lineparametersfromatheoreticaldatabaseareusedtocalculatelosscoefficients,ordeterminetheincrementallossfactors,inordertosetthedispatchpointforgenerators(outputpower).Ifaccuratevaluesoflineparametersre-allocatethegeneratorpowers,andreducetransmissionlossesby0.1%,thistranslatesintoimmenseenergysavingsoveryearsofoperatingthepowersystem.Forexample,at0.1%savings,alargeutilitytransmitting10000GWhannually,0.6LoadFactor,fuelat$20/MBTUand10.5Milrate,maysave$11MillionperyearforbulkpowerintheeasternU.S.Monitoringthestateofthepowersystemisamajorsecurityfunctionofthecomputersystemusedatthecentralcontrolcenter(dispatchcenter)ofutilities.Voltagesandpowerflowonlinesandbusesinthecontrolareaofthepowersystemaremonitoredontheorderofevery2seconds.Ifthemeasureddataarebeyondsafeoperatingtolerancelimits,thealarmsgeneratedmustbe'cleared'bythedispatcherthroughswitchinglinecompensatorssuchascapacitorbanksandshuntreactors,adjustingvariabletaptransformers,ortransferringgeneratoroutput,etc.Sothatdispatcheractioncanbebasedonreliableandcompleteinformation,measurementsofvoltagesandpowerflowareprocessedbyaStateEstimatorwhichdetectsfaultymeasurementtransducers(baddata)and'fillsin'lostmeasurementswhenRemoteTerminalUnits(RTU's)haveinterruptedsignals.StateEstimatorcalculationsarebasedupontheoreticalvaluesfortransmissionlineparameters.ErrorsintheanalyticalvaluesfortransmissionlineparameterslimittheStateEstimator’scapabilitytodetect'baddata',andmakeitineffectiveasamonitoringtool.Withtransmissionlineerrors,thenormalizedresidualsarelargerthantheyshouldbe.Atleastoneutilityadjustsitslineparameterdatabasetomatchtherealworldtransmissionlinesinordertoimprovethestatecalculated.II.ANECONOMICEXAMPLEConsiderthe5bustransmissionnetworkshowninfigure1,wherethecostofgenerationisbidasshownfor4busses.Thetotalloadis669MWandlocatedatbussesB,C,andD.Thetransmissionlineflowsascalculatedforloss-lesslines[1]isshowninfigure1.TheflowontransmissionlineXED=.0297islimitedto240MW.TheothertransmissionlinereactancesareXAB=.0281,XBC=.0108,XCD=.0297XAD=.0303,XAE=.0064andareloss-less.Theopenarrowsinfigure1indicateinjectedpower,andtheblackfillarrowsindicateloadatthebusInfigure1,ofalltheLocationalMarginalPrice(LMP)bidsforgeneration,the600MW@$10/MWhatbusEiscompletelyutilizedbeforethe69MWatbusAisemployed.Thetransmissionlineflowsthatresultfromthisdispatchareshownonthefigure.Thetotaloperatingcostis$6966/h.Fig.1EconomicDispatchfor669MWLoadtoUtilizetheLowestCostofAvailableGenerationAstheloadonthesystemuniformlyincreasesto300MWatbussesB,C,andD,theLMPdispatchwouldattempttouseallthe210MWofinexpensivepower(110MW@$14/MWhand100MW@$15/MWh)atbusAbefore90MWofthe$30/MWhpoweratbusDisused.Thetotalcostwouldbe$11,740/h.However,when210MWisdispatchedatbusA,thisresultsin243MWofflowonlineE-Dtoviolatetheconstraint.Asaresult,only166MWoftheinexpensivepoweratbusAisutilizedand124MWatbusDisrequired.Totaloperationcostincreasesto$12,100/hbecauseoftheconstraint.Thedispatchisshowninfigure1a.IfthetransmissionlineE-Dhasa‘realworld’reactanceofXED=1.25*.0297,orinotherwordshasameasured25%morereactancethanthedatabase,thedispatchfor900MWloadutilizesallthelowcostpowerbecausethepowerflowdoesnotviolatetheE-Dlineconstraint.Thetransmissionlinepowerflowsforthiscaseareshownonfigure2.Thetotalcostofthedispatchis$11,740/h.Theexampleshowninfigure1wasemployedbyanEasternUSApowerpooltodemonstrateconstraintsinlineflow.Figure2showsthatpowerflowscomputedwithcorrectlineparametersaresignificantlydifferent,tothepointwherelargeeconomicdifferencesarepresent.Correctionsarerarelymadetotransmissionlineparametersinordertomatchmeasuredlineflowsbecausesourcesofmeasurementerrorareunknown.Inautilityitalsodifficulttochangeparametersinthedatabasebecausesomanydifferentgroupswithintheutility,e.g.,planning,relaying,security,etc.,mustchangetheirvaluesorsettingsoffieldequipment.III.ESTIMATIONOFTRANSMISSIONLINEPARAMETERSForshorttomediumlength,comparedtoa60Hzwavelength,3-phasetransmissionlinesaremodeledbypi-equivalentscalculatedfromidealgeometryandoperatedunderbalancedphaseconditions.Thevoltagemagnitudesatthelineterminationsareanaverageofthephasemeasurements,usuallyobtainedwith1%to2%accuracystep-downtransformermeasurements.Fig.1AEconomicDispatchfor900MWLoadLimitedbyConstraintonLineE-DTherealandreactivepowerflowforthepi-equivalentisasumofflowsonthe3phasesandobtainedasaninstantaneousproductof1%to2%accuratecurrentmeasurementswiththevoltagemeasurements.NeglectingthesmallcontributionsofA/Dconvertersatthetransducersandcomputernumericalwordlength,theoverallaccuracyofpowerflowmeasurementsalsoisontheorderof1%to2%.Figure2EconomicDispatchfor900MWLoadwithXED=1.25*.0297TransmissionLineReactance(Nolineconstraintsviolated)TheEasternpowerpoolusedforfigure1and1aprovidedaSCADA‘snapshot’ofpowerflowandvoltagemeasurementsforthe3-busnetworkshowninfigure3.Dataofthe‘snapshot’ispresentedinfigure4.NoticemorerealpowercomesoutoflineL1thangoesintoit(S1andS2),butthisanomalyisduetomeasurementtoleranceastherealpowerdifferenceis~2%oftheabsolutevalue.‘Snapshot’isStateEstimatorterminologyforanalmostsynchronizedsetofmeasurementsbecauseashorttimeinterval(milliseconds)existsfromtheinitialmeasurementtothefinalmeasurementforaslowlychangingload/generation.Fig.3SCADAMeasurementPointsona3BusNetworkFig.4SCADAMeasurementsforFigure3AStateEstimationcomputation‘smoothes’thedata,detectsbadtransducers,andcalculatesthebestestimateofthevoltageandphaseangleatbussesofthenetwork,i.e.,the‘state’ofthenetwork.Thecalculatedstateisaweightedleastsquaresestimate‘bestfit’tothemeasurementsusingdatabasevaluesforthepi-equivalenttransmissionlineparameters,R+jXfortheseriesp.u.impedanceelements–jY/2fortheshuntp.u.susceptanceatbothendsoftheline.Analyticalmethodsexisttoestimatetransmissionlineparametersfrom‘snapshots’inconjunctionwiththeStateEstimator.ThefirstsuchmethodappearedsoonafterthestartofStateEstimation[2].Manycontributionsweremadearound1990ofwhich[3,4]aretypical,newtechniquescontinuetoevolve[5].Arecentsummaryisreference[6].Thedata‘snapshot’offigure4wasusedtoestimatethetransmissionlineparametersoffigure3byamethodofpropagatingresidualerrorsofStateEstimationrelatedto[5]andfindingtheworst‘fit’line.Theresultsoftheparameterestimationwiththismethodarepresentedinfigure5.Only2transmissionlinesoftheFigure3networkcouldbeestimatedbeforeresidualerrors‘swampedout’furtherdetection.LinesBCandABshow25%errorsinlinechargingsusceptancecomparedtothedatabase.Thereisa50%errorintheestimatedlineresistanceoflineBCcomparedtothedatabasevalue,whichmaybeduetoanoperatingtemperaturedifference.Fig.5ResultsofTransmissionLineParameterEstimationforNetworkofFigure3withSCADADataofFigure4TheestimatedvaluesforlinechargingsusceptanceoftransmissionlinesBCandABaffectreactivecompensationintheirvicinity.The50%differenceinresistanceoflineBCmayaffectthetransmissionlosscoefficientsinthevicinity.PowerflowcalculationswithS1toS6dataoffigure4showthatpowerflowonthenetworklinesismuchclosertomeasuredvaluesusingtheestimatedparametersthanwiththedatabasevalues.IV.VERIFICATIONOFTHEPARAMETERESTIMATIONMETHODItisdifficulttoprovethatestimatedtransmissionlineparametersaretruetothe‘realworld’values.AnalyticalcasesusingpowerflowcomputationsfromstandardIEEE5bus,14buscases,etc.,thencorruptingthelineparametersandflowsbyrandomnoise,havebeenusedinordertoobtaintestthealgorithm.However,thisanalyticalprocessdoesnotmatch‘realworld’data.A‘realworld’casetoverifytheparameterestimationalgorithmisasfollows.Parametersfortransformersareperhapsthebestknownoflargepowerhandlingelementsbecauseofmeasurementsperformedbythemanufacturer.The3paralleltransformersanda4thseriestransformershowninfigure6a,hadtheSCADAsnapshotmeasurementsshowninfigure6b.Fig.6aParallelandSeriesTransformersFig.6bSCADAMeasuredFlowsfortheParallelandSeriesTransformersTheparameterestimationprogramappliedtothedataoffigure6bresultedinthevaluesshowninfigure7.ThereisexactagreementofestimatedanddatabasereactancefortransformerTABK63,andsomedifferenceinresistance.TheestimatedparametersforTABK62matchthedatabasevaluesforTABK60,andtheestimatedvaluesforTABK60matchthedatabasevaluesforTABK62.ThesetwoanalysisdiscrepancieswereresolvedwhentheutilitydiscoveredTABK62andTABK60hadtheirfieldinstrumentationwiresswitchedattheremote-terminalunit(RTU).AmoreextensiveverificationoftheparameterestimationmethodwasobtainedinverycloselycontrolledlaboratorytestbedexperimentsconductedatNASAGlennResearchCenter[7].Thesetests,performedonbothradialandloopnetworks,consideredatransmissionlinefaulttobeanychangeinthetransmissionlinetestbedvaluecomparedtothepre-testorcalibrateddatabasevalue.Inthelaboratorytests,discretephysicalresistorswereaddedasseriesorline-to-groundcomponentsinthetestbed,andtheparameterestimationprogramwasrequiredtodetectthealteredlinefromadatasnapshot.Thetestsfoundthedeliberateerrorintroducedinatransmissionline100%ofthetimeoverwiderangesofnetworkoperatingconditions.Thetestsdemonstratedthelimitofthetransmissionlineparameterestimationprogramisthecapabilitytoestimatelineswithresidualsabovethethresholdof‘noise’duetomeasurementandothertransmissionlineerrorsinthenetwork.Forthepowersystemcaseshowninfigures3,4,and5,only2of3transmissionlinescouldbeestimated.Forthetransformercaseinfigures6a,6b,andfigure7,only3of4transformerscouldbeparameterestimatedbeforethealgorithmbecamelimitedby‘noise’.Fig.7DatabaseandParameterEstimationsforaTransformerGroup(TABK62andTABK60switchedinthefield)V.ALARGENETWORKTESTCASEThe19bus,42line,2transformernetworkshowninfigure8hadaSCADAsnapshotofonlytransmissionlineflowsandvoltageswithwhichtoperformtheparameterestimation.Inthefigure,thebusnumbersareincircles.Often2or4transmissionlinesareinparallelfrombus-to-bus.TheSCADAdatasnapshotforfigure8consistedof170measurementsoflineflowsplusvoltages.AportionoftheSCADAdataispresentedinfigure9.The170SCADAmeasurementswereusedtocomputethestateestimateFromtheStateEstimatorresiduals,theworstfitofestimatedparameterstodatabasevalueswasforthetransmissionlinebetweenbus#8and#16,followedbytheparallellinesbetweenbus#6andbus#8,etc.,intheorderpresentedinfigure9.Valuesofestimatedtransmissionlineparametersarepresentedinfigure10forlinesthatcouldbeestimatedbefore‘noise’limitedFigure8TestNetworkof19BussesFig.9SCADADataforPartofFigure8(p.u.,100MVABase)Fig.10EstimatedLineParametersfor9Linesfromthe19BusNetwork(Figure8)Acomparisonoffigure10estimatedparametersagainstthefigure9databasevaluesshows50%to400%differencesinlinecharging.Estimatedresistancecomparedtodatabaseresistancevariesfromcloseagreementto300%difference.Thelinesbetweenbus#15andbus#6show300%differenceinreactancesestimatedcomparedtodatabase.Thesearesignificantdifferences.BymatchinglineterminationP,Q,Vinaoneline,twobuspowerflow,thecalculationshowsestimatedlinesareacloserfittoSCADAflows.AStateEstimatorcomputationforthe19bustopologyoffigure8withdatabaselineparametershad50pointsofnormalizedresiduals>.00005but<=.0003,andnopointshigher.Thesamesnapshotwithestimatedtransmissionlineparametershadonly28pointsinthissamerange.Thisisamuchcloser‘fit’ofcalculationstomeasurements.VI.CONCLUDINGREMARKSTheparameterestimationmethodwasverifiedbyseveralfieldtests,simplecomputations,andinlaboratoryexperiments.Physicalchecks,suchasSCADAmeasurementsonopen-endexcitationoftransmissionlines,shouldbeusedbyutilitiestomeasurelinecapacitancewhenalineisrestoredtoservice.SCADA-basedestimatesaremoreaccuratethantheoreticaldatabaseparameters.Thepropertyofparameterestimation,aseventuallylimitedby‘noise’inmeasurementsandothertransmissionlineerrors,forcesthealgorithmtobeappliedtoonly15to30busportionsoflargernetworks.Analysisisperformeduntilthealgorithmbecomeslimited,thenthetestareaismovedtoanewportionofthelargernetwork.VII.REFERENCES[1]Wood,A.J.,andWollenberg,B.F.“PowerGeneration,Operation,andControl”,text,J.Wiley,1996,ISBN0-47158699-4[2]Debs,A.,“ParameterEstimationforPowerSystemsintheSteady-State”,IEEETrans.Power,Vol.19,#6,Dec.1974[3]Wu,F.F.,“DetectionofTopologyErrorsbyStateEstimation”,IEEEPESWinterMeeting,1988[4]Liu,W-H.,E.,Wu,F.F.,andLun,S-M,“ObservabilityAnalysisandBadDataprocessingforStateEstimationwithEqualityConstraints”,IEEETrans.Pow.Sys.,Vol.PWRS-3,May1988[5]Liu,W-H.,E.,Wu,F.F.,andLun,S-M.,“EstimationofParameterErrorsfromMeasurementResidualsinStateEstimation”,Trans.Pow.Sys.,Vol.7,No.1,Feb1992[6]Zarco,P.andExposito,A.G.,“PowerSystemParameterEstimation:ASurvey”,IEEETrans.Pow.Sys.,Vol15,No.1,Feb,2000[7]Kusic,G.L.,“ExperimentalTestsonPowerSystemMonitoringandFaultDetection”,reporttoNASAGlennresearchCenterfromPowerSystemsConsultants,Inc,Dec24,2002Dr.GeorgeKusic,M1953,receivedhisBSEE(1957),MSEE(1964),andPh.DEE(1968)fromCarnegie-MellonUniversity.Sincehereceivedhisdoctorate,hehasbeenafacultymemberoftheDepartmentofElectricalEngineeringattheUniversityofPittsburgh.Hisareasofinterestarethepowerfieldandelectronics.Dr.KusichasnumerousIEEEpublicationsinthepowerfieldandistheauthorofatextbook,“Computer-AidedPowerSystemAnalysis”,byPrentiss-Hall.In1981Dr.KusicfoundedPowerSystemsConsultantstoprovideelectricalengineeringconsultingtovariousfirms,utilities,andgovernmentalagencies.Amongthefirm’sclientsareWestinghouseElectric,IBM,Commonwealth-Edison,AdvancedControlSystems,andNASA.ForNASA,Dr.KusicinitiatedtheuseofStateEstimationandpowerflowmethodsontheInternationalSpaceStation.Formanufacturers,Dr.Kusichaswritten,installed,andfield-testedmanysoftwareprogramsforEnergyManagementSystems(EMS).Dr.Kusicalsohasusedhiselectronicsbackgroundtodevelopuniqueinstrumentationforpowersystemmeasurements.DavidL.GarrisonreceivedhisBSEE(1971)andMEEE(1976),fromClemsonUniversity.Hehas30yearsengineeringexperience,firstwithSanteeCooperasatransmissionplannerfor8yearsandcurrentlywithDukeEnergywithDukeEnergyfor22yearsinitstransmissionplanningandoperatingareas.
譯文:基于SCADA數(shù)據(jù)庫參數(shù)估計進行傳輸線測量G.L庫斯科和D.L.加里森摘要——由SCADA系統(tǒng)的測量值看來,傳輸線的等效電路參數(shù)通常有25%到30%的誤差比。這些錯誤導(dǎo)致了經(jīng)濟調(diào)度是錯誤的,并導(dǎo)致成本增加或不正確的計費。參數(shù)誤差也影響事故分析,短路分析,距離保護,整機穩(wěn)定性計算,輸電規(guī)劃,和狀態(tài)估計分析。具一個經(jīng)濟上的例子來證明傳輸線誤差的影響,從幾家公用事業(yè)公司的SCADA測量用于計算傳輸線參數(shù)的“現(xiàn)實”的值。與估計的參數(shù)與使用理論值比值的計算。關(guān)鍵詞:SCADA測量,狀態(tài)估計,線路參數(shù)估計一、引言在大多數(shù)情況下,公用事業(yè)企業(yè)的理論值線參數(shù)的理想幾何線如導(dǎo)體上方平高度計算,恒電阻接地。地電阻率隨地形可變。在丘陵地形中導(dǎo)線弧垂的影響是無法估計的。通常屏蔽線在每個塔接地以代替浮在整個線路長度。線路電阻隨電流、環(huán)境溫度和風速的影響。一個斷供期需要測量線路充電電容,只有片面的激勵不在開路端電壓上升的原因太多了。與平行線相互耦合的新建筑,影響舊的數(shù)據(jù)庫值。很少測量傳輸線的串聯(lián)電抗器,因此使用的值是一個理想的換位線。線路不換位,因為增加了施工成本的機械會改變導(dǎo)線相對于支撐桿每1/3的距離的位置。所有這些變化從理想的條件,和一些實際測量,公用事業(yè)通常有25%到30%的錯誤在他們的數(shù)據(jù)庫中的參數(shù)相比于“現(xiàn)實”的值一樣。
公用事業(yè)使用有功功率和無功功率計量收入。傳輸線損耗通常小于3%的總代。然而,從理論的數(shù)據(jù)庫行參數(shù)來計算損失系數(shù),或用機組的調(diào)度點(輸出功率)確定增量損失的因素。如果線路參數(shù)重新分配電力發(fā)電機的精確值,并減少0.1%的傳輸損耗,這將轉(zhuǎn)化為巨大的能量積蓄在電力系統(tǒng)運行。例如,在0.1%時的儲蓄,大量的電力傳輸在10000瓦左右,負荷率0.6,達到20美元/百萬英熱單位和10.5密耳率的燃料,每年在美國東部電力可以節(jié)省11000000美元。監(jiān)測電力系統(tǒng)的狀態(tài)是在中央控制中心的計算機系統(tǒng)的一個主要的安全功能(調(diào)度中心)的事業(yè)。對電力系統(tǒng)的控制線路、母線電壓和功率流在每2秒級監(jiān)測。如果測量數(shù)據(jù)超出安全操作的容忍限度,警報產(chǎn)生必須“清除”,由調(diào)度員通過切換線路補償電容器、并聯(lián)電抗器等,調(diào)節(jié)可變抽頭變壓器,發(fā)電機的輸出或轉(zhuǎn)移等,調(diào)度員可以根據(jù)可靠和完整的信息,通過電壓和功率流的測量狀態(tài)估計檢測故障的測量傳感器(壞數(shù)據(jù)處理)和“填補”失去了遠程終端的單元(RTU測量時有中斷信號)。狀態(tài)估計的計算基于傳輸線參數(shù)的理論值。估計器的性能是在輸電線路參數(shù)的理論值誤差極限狀態(tài)檢測不良數(shù)據(jù),并使其無效的監(jiān)視工具。隨著傳輸線的誤差,標準化殘差大于應(yīng)該他們。至少一個效用調(diào)整線的參數(shù)數(shù)據(jù)庫與現(xiàn)實的輸電線路可以提高狀態(tài)計算。在圖1中,所有的節(jié)點邊際電價(LMP)投標發(fā)電,600兆瓦@10美元/兆瓦時在總線完全利用之前采用的69兆瓦的總線。結(jié)果這個調(diào)度的傳輸線流動在如圖所示。營業(yè)總成本是6966美元/小時。圖1利用現(xiàn)有發(fā)電成本最低的669兆瓦負荷經(jīng)濟調(diào)度對系統(tǒng)的負載均勻地增加到300兆瓦的總線B,C,D,LMP調(diào)度會嘗試使用所有的210兆瓦的廉價電力(110兆瓦@14美元/兆瓦和100兆瓦@15美元/兆瓦時)在總線前90兆瓦的30美元/兆瓦時在總線D電力應(yīng)用??偝杀臼?1740美元/小時。然而,當210兆瓦是派出總線時,這個結(jié)果在網(wǎng)上給違反約束的243兆瓦的供流。因此,在總線利用124兆瓦的總線D只需要166兆瓦電力這么便宜。由于約束,總運營成本增加12100美元/小時。調(diào)度圖1a所示。如果傳輸線ED具有固定=1.25*“現(xiàn)實”的電抗。0297,或者說有一個測量25%電抗比數(shù)據(jù)庫,900兆瓦負荷調(diào)度利用所有的低成本電力因為潮流不違反E-D線約束。在這種情況下,如圖2所示的輸電線路功率流。調(diào)度的總成本是11740美元/小時。如圖1所示的例子是一位美國東部電網(wǎng)用來演示線流動的限制。圖2顯示了功率流與正確的線路參數(shù)計算有明顯的不同,在經(jīng)濟差異大的點。修正很少用傳輸線參數(shù)以匹配測量的線流,由于測量誤差的來源是未知的。一個實用的也很難更改數(shù)據(jù)庫中的參數(shù)太多不同群體的效用,例如,規(guī)劃,保護,安全,等,必須改變其值或設(shè)置現(xiàn)場設(shè)備。圖1A900兆瓦負荷經(jīng)濟調(diào)度的在線版的約束限制二、輸電線路參數(shù)估計短至中等長度,比60赫茲波,三相輸電線路等值的PI從理想的幾何形狀和平衡相的條件下操作的計算模型。在線路終端電壓幅值的相位測量值的平均值,通常獲得1%到2%的準確性的降壓變壓器的測量。圖2900兆瓦負荷經(jīng)濟調(diào)度和XED=1.25*0297輸電線路電抗(無線約束違反)等效PI的有功和無功潮流是一筆流動的3個階段,得到1%的瞬時產(chǎn)品2%與電壓測量精確的電流測量。忽略在傳感器和計算機數(shù)值貢獻較小字長的A/D轉(zhuǎn)換器,功率流的整體測量精度也在1%到2%。用于11a的圖3所示的總線網(wǎng)絡(luò)提供了一個系統(tǒng)的“快照”的潮流和電壓測量圖的東電池?!翱煺铡苯o出的數(shù)據(jù)在圖4中。多注意真正的力量來自于進線L1(S1和S2)它,但這種異常是由于測量誤差為實際功率差2%的絕對值?!翱煺铡笔菭顟B(tài)估計幾乎同步的測量的術(shù)語,因為短時間間隔(毫秒)的存在,從最初的測量到最終的測量一個緩慢變化的負荷/發(fā)電。圖3監(jiān)控測點在3總線網(wǎng)絡(luò)狀態(tài)估計計算的平滑的數(shù)據(jù),檢測到壞的傳感器,并計算出電壓和相位角的最佳估計在總線的網(wǎng)絡(luò),例如,網(wǎng)絡(luò)的“狀態(tài)”。計算出的狀態(tài)是一個加權(quán)最小二乘估計“最適合的”使用該等效傳輸線參數(shù)數(shù)據(jù)庫的值的測量,R+JX系列的標幺值阻抗元件–JY/2分流普納線的兩端。分析方法存在“與狀態(tài)估計相結(jié)合的快照估計線路參數(shù)。第一次這樣的狀態(tài)估計方法[2]開始后不久出現(xiàn)。許多貢獻了大約1990的[3,4]是典型的,新技術(shù)的不斷發(fā)展[5]。最近的一個總結(jié),參考[6]。圖4中的數(shù)據(jù)的“快照”是用來傳播的狀態(tài)估計[5]和最“適合”的在線查找相關(guān)殘差法估算圖3傳輸線參數(shù)。用這個方法的參數(shù)估計結(jié)果如圖5所示。圖4監(jiān)控測量圖3圖5傳輸線參數(shù)估計結(jié)果與圖4圖3網(wǎng)絡(luò)SCADA數(shù)據(jù)只有圖2的線路圖在3的網(wǎng)絡(luò)中可以淹沒殘余誤差,進一步檢測估計線BC和AB25%誤差線充電電
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鈑金展柜研發(fā)與市場推廣合作合同2篇
- 二零二五年度高品質(zhì)實木地板全球購銷合同范本3篇
- 二零二五年掘進機操作人員安全教育與培訓(xùn)合同3篇
- 二零二五版房地產(chǎn)股權(quán)托管及資產(chǎn)增值管理合同3篇
- 二零二五年度高級別墅房產(chǎn)出售合同3篇
- 2025年高性能材料采購與合作研發(fā)合同3篇
- 二零二五版健身俱樂部健身教練就業(yè)保障與福利合同3篇
- 2024新勞動法對人力資源績效評估與反饋合同3篇
- 專業(yè)化生產(chǎn)流程服務(wù)協(xié)議2024版版B版
- 2024版公共廁所管理承包合同3篇
- 2024年河南省公務(wù)員考試《行測》真題及答案解析
- 2022-2024北京初三二模英語匯編:話題作文
- 《阻燃材料與技術(shù)》-顏龍 習題解答
- 人教版八年級英語上冊Unit1-10完形填空閱讀理解專項訓(xùn)練
- 2024年湖北省武漢市中考英語真題(含解析)
- GB/T 44561-2024石油天然氣工業(yè)常規(guī)陸上接收站液化天然氣裝卸臂的設(shè)計與測試
- 《城市綠地設(shè)計規(guī)范》2016-20210810154931
- 網(wǎng)球場經(jīng)營方案
- 2024年公司保密工作制度(四篇)
- 重慶市康德卷2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析
- 建筑結(jié)構(gòu)課程設(shè)計成果
評論
0/150
提交評論