版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
專題04導數(shù)及其應用(解答題)(文科專用)【2022年全國甲卷】1.已知函數(shù),曲線在點處的切線也是曲線的切線.(1)若,求a;(2)求a的取值范圍.【答案】(1)3(2)【解析】【分析】(1)先由上的切點求出切線方程,設出上的切點坐標,由斜率求出切點坐標,再由函數(shù)值求出即可;(2)設出上的切點坐標,分別由和及切點表示出切線方程,由切線重合表示出,構造函數(shù),求導求出函數(shù)值域,即可求得的取值范圍.(1)由題意知,,,,則在點處的切線方程為,即,設該切線與切于點,,則,解得,則,解得;(2),則在點處的切線方程為,整理得,設該切線與切于點,,則,則切線方程為,整理得,則,整理得,令,則,令,解得或,令,解得或,則變化時,的變化情況如下表:01000則的值域為,故的取值范圍為.【2022年全國乙卷】2.已知函數(shù).(1)當時,求的最大值;(2)若恰有一個零點,求a的取值范圍.【答案】(1)(2)【解析】【分析】(1)由導數(shù)確定函數(shù)的單調(diào)性,即可得解;(2)求導得,按照、及結合導數(shù)討論函數(shù)的單調(diào)性,求得函數(shù)的極值,即可得解.(1)當時,,則,當時,,單調(diào)遞增;當時,,單調(diào)遞減;所以;(2),則,當時,,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;所以,此時函數(shù)無零點,不合題意;當時,,在上,,單調(diào)遞增;在上,,單調(diào)遞減;又,由(1)得,即,所以,當時,,則存在,使得,所以僅在有唯一零點,符合題意;當時,,所以單調(diào)遞增,又,所以有唯一零點,符合題意;當時,,在上,,單調(diào)遞增;在上,,單調(diào)遞減;此時,由(1)得當時,,,所以,此時存在,使得,所以在有一個零點,在無零點,所以有唯一零點,符合題意;綜上,a的取值范圍為.【點睛】關鍵點點睛:解決本題的關鍵是利用導數(shù)研究函數(shù)的極值與單調(diào)性,把函數(shù)零點問題轉化為函數(shù)的單調(diào)性與極值的問題.【2021年甲卷文科】3.設函數(shù),其中.(1)討論的單調(diào)性;(2)若的圖象與軸沒有公共點,求a的取值范圍.【答案】(1)的減區(qū)間為,增區(qū)間為;(2).【解析】【分析】(1)求出函數(shù)的導數(shù),討論其符號后可得函數(shù)的單調(diào)性.(2)根據(jù)及(1)的單調(diào)性性可得,從而可求a的取值范圍.【詳解】(1)函數(shù)的定義域為,又,因為,故,當時,;當時,;所以的減區(qū)間為,增區(qū)間為.(2)因為且的圖與軸沒有公共點,所以的圖象在軸的上方,由(1)中函數(shù)的單調(diào)性可得,故即.【點睛】方法點睛:不等式的恒成立問題,往往可轉化為函數(shù)的最值的符號來討論,也可以參變分離后轉化不含參數(shù)的函數(shù)的最值問題,轉化中注意等價轉化.【2021年乙卷文科】4.已知函數(shù).(1)討論的單調(diào)性;(2)求曲線過坐標原點的切線與曲線的公共點的坐標.【答案】(1)答案見解析;(2)和.【解析】【分析】(1)首先求得導函數(shù)的解析式,然后分類討論導函數(shù)的符號即可確定原函數(shù)的單調(diào)性;(2)首先求得導數(shù)過坐標原點的切線方程,然后將原問題轉化為方程求解的問題,據(jù)此即可求得公共點坐標.【詳解】(1)由函數(shù)的解析式可得:,導函數(shù)的判別式,當時,在R上單調(diào)遞增,當時,的解為:,當時,單調(diào)遞增;當時,單調(diào)遞減;當時,單調(diào)遞增;綜上可得:當時,在R上單調(diào)遞增,當時,在,上單調(diào)遞增,在上單調(diào)遞減.(2)由題意可得:,,則切線方程為:,切線過坐標原點,則:,整理可得:,即:,解得:,則,切線方程為:,與聯(lián)立得,化簡得,由于切點的橫坐標1必然是該方程的一個根,是的一個因式,∴該方程可以分解因式為解得,,綜上,曲線過坐標原點的切線與曲線的公共點的坐標為和.【點睛】本題考查利用導數(shù)研究含有參數(shù)的函數(shù)的單調(diào)性問題,和過曲線外一點所做曲線的切線問題,注意單調(diào)性研究中對導函數(shù),要依據(jù)其零點的不同情況進行分類討論;再求切線與函數(shù)曲線的公共點坐標時,要注意除了已經(jīng)求出的切點,還可能有另外的公共點(交點),要通過聯(lián)立方程求解,其中得到三次方程求解時要注意其中有一個實數(shù)根是求出的切點的橫坐標,這樣就容易通過分解因式求另一個根.三次方程時高考壓軸題中的常見問題,不必恐懼,一般都能容易找到其中一個根,然后在通過分解因式的方法求其余的根.【2020年新課標1卷文科】5.已知函數(shù).(1)當時,討論的單調(diào)性;(2)若有兩個零點,求的取值范圍.【答案】(1)的減區(qū)間為,增區(qū)間為;(2).【解析】【分析】(1)將代入函數(shù)解析式,對函數(shù)求導,分別令導數(shù)大于零和小于零,求得函數(shù)的單調(diào)增區(qū)間和減區(qū)間;(2)若有兩個零點,即有兩個解,將其轉化為有兩個解,令,求導研究函數(shù)圖象的走向,從而求得結果.【詳解】(1)當時,,,令,解得,令,解得,所以的減區(qū)間為,增區(qū)間為;(2)若有兩個零點,即有兩個解,從方程可知,不成立,即有兩個解,令,則有,令,解得,令,解得或,所以函數(shù)在和上單調(diào)遞減,在上單調(diào)遞增,且當時,,而時,,當時,,所以當有兩個解時,有,所以滿足條件的的取值范圍是:.【點睛】本題考查的是有關應用導數(shù)研究函數(shù)的問題,涉及到的知識點有應用導數(shù)研究函數(shù)的單調(diào)性,根據(jù)零點個數(shù)求參數(shù)的取值范圍,在解題的過程中,也可以利用數(shù)形結合,將問題轉化為曲線和直線有兩個交點,利用過點的曲線的切線斜率,結合圖形求得結果.【2020年新課標2卷文科】6.已知函數(shù)f(x)=2lnx+1.(1)若f(x)≤2x+c,求c的取值范圍;(2)設a>0時,討論函數(shù)g(x)=的單調(diào)性.【答案】(1);(2)在區(qū)間和上單調(diào)遞減,沒有遞增區(qū)間【解析】【分析】(1)[方法三]不等式轉化為,構造新函數(shù),利用導數(shù)求出新函數(shù)的最大值,進而進行求解即可;(2)對函數(shù)求導,把導函數(shù)的分子構成一個新函數(shù),再求導得到,根據(jù)的正負,判斷的單調(diào)性,進而確定的正負性,最后求出函數(shù)的單調(diào)性.【詳解】(1)[方法一]【最優(yōu)解】:等價于.設,則.當時,,所以在區(qū)間內(nèi)單調(diào)遞增;當時,,所以在區(qū)間內(nèi)單調(diào)遞減.故,所以,即,所以c的取值范圍是.[方法二]:切線放縮若,即,即當時恒成立,而在點處的切線為,從而有,當時恒成立,即,則.所以c的取值范圍為.[方法三]:利用最值求取值范圍函數(shù)的定義域為:,設,則有,當時,單調(diào)遞減,當時,單調(diào)遞增,所以當時,函數(shù)有最大值,即,要想不等式在上恒成立,只需;所以c的取值范圍為.(2)且因此,設,則有,當時,,所以,單調(diào)遞減,因此有,即,所以單調(diào)遞減;當時,,所以,單調(diào)遞增,因此有,即,所以單調(diào)遞減,所以函數(shù)在區(qū)間和上單調(diào)遞減,沒有遞增區(qū)間.【整體點評】(1)方法一:分類參數(shù)之后構造函數(shù)是處理恒成立問題的最常用方法,它體現(xiàn)了等價轉化的數(shù)學思想,同時是的導數(shù)的工具也得到了充分利用;方法二:切線放縮體現(xiàn)了解題的靈活性,將數(shù)形結合的思想應用到了解題過程之中,掌握常用的不等式是使用切線放縮的基礎.方法二:利用最值確定參數(shù)取值范圍也是一種常用的方法,體現(xiàn)了等價轉化的數(shù)學思想.【2020年新課標3卷文科】7.已知函數(shù).(1)討論的單調(diào)性;(2)若有三個零點,求的取值范圍.【答案】(1)詳見解析;(2).【解析】【分析】(1),對分和兩種情況討論即可;(2)有三個零點,由(1)知,且,解不等式組得到的范圍,再利用零點存在性定理加以說明即可.【詳解】(1)由題,,當時,恒成立,所以在上單調(diào)遞增;當時,令,得,令,得,令,得或,所以在上單調(diào)遞減,在,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感謝老師的發(fā)言稿15篇
- 心理健康觀后感
- 易錯題31 語言文字運用之詞語效果題-不結合文意分析詞語效果高考語文備戰(zhàn)2025年高考易錯題(新高考專用)含解析
- 愚人節(jié)日記資料
- 怦然心動觀后感(集合15篇)
- 投資管理公司介紹
- 怦然心動觀后感6篇
- 初級會計經(jīng)濟法基礎-初級會計《經(jīng)濟法基礎》點睛試卷13
- 中國發(fā)光二極管(LED)行業(yè)市場發(fā)展前景研究報告-智研咨詢發(fā)布
- 智研咨詢發(fā)布:2024年中國異丙醇行業(yè)競爭格局及發(fā)展前景研究報告
- 2025年度廚師職業(yè)培訓學院合作辦學合同4篇
- 《組織行為學》第1章-組織行為學概述
- 市場營銷試題(含參考答案)
- 2024年山東省泰安市高考物理一模試卷(含詳細答案解析)
- 護理指南手術器械臺擺放
- 腫瘤患者管理
- 四川省成都市高新區(qū)2024年七年級上學期語文期末試卷【含答案】
- 2025年中國航空部附件維修行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預測報告
- 國土空間生態(tài)修復規(guī)劃
- 1-1《送瘟神》課件-高教版中職語文職業(yè)模塊
- (高清版)DZT 0399-2022 礦山資源儲量管理規(guī)范
評論
0/150
提交評論