下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.若雙曲線y=在每一個象限內,y隨x的增大而減小,則k的取值范圍是()A.k<3 B.k≥3 C.k>3 D.k≠32.若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(﹣4,),則下列點在該圖象上的是()A.(﹣5,2) B.(3,﹣6) C.(2,9) D.(9,2)3.如圖,在平面直角坐標系中,⊙P的圓心坐標是(-3,a)(a>3),半徑為3,函數(shù)y=-x的圖像被⊙P截得的弦AB的長為,則a的值是()A.4 B. C. D.4.如圖,在中,,將繞點逆時針旋轉得到,其中點與點是對應點,且點在同一條直線上;則的長為()A. B. C. D.5.如圖,點在以為直徑的半圓上,點為圓心,,則的度數(shù)為()A. B. C. D.6.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.87.如圖,為圓的切線,交圓于點,為圓上一點,若,則的度數(shù)為().A. B. C. D.8.己知點都在反比例函數(shù)的圖象上,則()A. B. C. D.9.已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(-1,1),下列結論:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正確結論的個數(shù)是()A.1 B.2 C.3 D.410.如圖,在平行四邊形ABCD中,E是DC上的點,DE:EC=3:2,連接AE交BD于點F,則△DEF與△BAF的面積之比為()A.2:5 B.3:5 C.9:25 D.4:2511.在平面直角坐標系中,點P(﹣1,2)關于原點的對稱點的坐標為()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)12.如圖,在中,,,點、、分別在邊、、上,且與關于直線DE對稱.若,,則().A.3 B.5 C. D.二、填空題(每題4分,共24分)13.如圖,為的直徑,則_______________________.14.如圖,在四邊形ABCD中,AD∥BC∥EF,EF分別與AB,AC,CD相交于點E,M,F(xiàn),若EM:BC=2:5,則FC:CD的值是_____.15.已知二次函數(shù)y=x2﹣5x+m的圖象與x軸有兩個交點,若其中一個交點的坐標為(1,0),則另一個交點的坐標為_____.16.如圖,PA、PB分別切⊙O于點A、B,若∠P=70°,則∠C的大小為(度).17.如圖,A是反比例函數(shù)圖象上的一點,點B、D在軸正半軸上,是關于點D的位似圖形,且與的位似比是1:3,的面積為1,則的值為____.18.等腰△ABC的腰長與底邊長分別是方程x2﹣6x+8=0的兩個根,則這個△ABC的周長是_____.三、解答題(共78分)19.(8分)如圖,拋物線與軸相交于兩點(點在點的左側),與軸相交于點.拋物線上有一點,且.(1)求拋物線的解析式和頂點坐標.(2)當點位于軸下方時,求面積的最大值.(3)①設此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為.求關于的函數(shù)解析式,并寫出自變量的取值范圍;②當時,點的坐標是___________.20.(8分)如圖,AB是⊙O的弦,過點O作OC⊥OA,OC交于AB于P,且CP=CB.(1)求證:BC是⊙O的切線;(2)已知∠BAO=25°,點Q是弧AmB上的一點.①求∠AQB的度數(shù);②若OA=18,求弧AmB的長.21.(8分)如圖,已知反比例函數(shù)的圖像與一次函數(shù)的圖象相交于點A(1,4)和點B(m,-2).(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求ΔAOC的面積;(3)直接寫出時的x的取值范圍(只寫答案)22.(10分)如圖,已知是的直徑,點是延長線上一點過點作的切線,切點為.過點作于點,延長交于點.連結,,,.若,.(1)求的長。(2)求證:是的切線.(3)試判斷四邊形的形狀,并求出四邊形的面積.23.(10分)如圖,將矩形ABCD繞點C旋轉得到矩形EFGC,點E在AD上.延長AD交FG于點H(1)求證:△EDC≌△HFE;(2)若∠BCE=60°,連接BE、CH.證明:四邊形BEHC是菱形.24.(10分)如圖,正方形ABCD,將邊BC繞點B逆時針旋轉60°,得到線段BE,連接AE,CE.(1)求∠BAE的度數(shù);(2)連結BD,延長AE交BD于點F.①求證:DF=EF;②直接用等式表示線段AB,CF,EF的數(shù)量關系.25.(12分)2018年非洲豬瘟疫情暴發(fā)后,專家預測,2019年我市豬肉售價將逐月上漲,每千克豬肉的售價y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.月份x…3456…售價y1/元…12141618…(1)求y1與x之間的函數(shù)關系式.(2)求y2與x之間的函數(shù)關系式.(3)設銷售每千克豬肉所獲得的利潤為w(元),求w與x之間的函數(shù)關系式,哪個月份銷售每千克豬肉所第獲得的利潤最大?最大利潤是多少元?26.如圖,?ABD內接于半徑為5的⊙O,連結AO并延長交BD于點M,交圓⊙O于點C,過點A作AE//BD,交CD的延長線于點E,AB=AM.(1)求證:?ABM∽?ECA.(2)當CM=4OM時,求BM的長.(3)當CM=kOM時,設?ADE的面積為,?MCD的面積為,求的值(用含k的代數(shù)式表示).
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)反比例函數(shù)的性質可解.【詳解】解:∵雙曲線在每一個象限內,y隨x的增大而減小,∴k-3>0∴k>3故選:C.【點睛】本題考查了反比例函數(shù)的性質,掌握反比例函數(shù),當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減??;當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.2、B【分析】根據(jù)反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(﹣4,)求出k的值,進而根據(jù)在反比例函數(shù)圖像上的點的橫縱坐標的積應該等于其比例系數(shù)對各選項進行代入判斷即可.【詳解】∵若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(﹣4,),∴k=﹣4×=﹣18,A:,故不在函數(shù)圖像上;B:,故在函數(shù)圖像上;C:,故不在函數(shù)圖像上;D:,故不在函數(shù)圖像上.故選:B.【點睛】本題主要考查了反比例函數(shù)圖像上點的坐標特征,求出k的值是解題關鍵.3、B【分析】如圖所示過點P作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,可得OC=3,PC=a,把x=-3代入y=-x得y=3,可確定D點坐標,可得△OCD為等腰直角三角形,得到△PED也為等腰直角三角形,又PE⊥AB,由垂徑定理可得AE=BE=AB=2,在Rt△PBE中,由勾股定理可得PE=,可得PD=PE=,最終求出a的值.【詳解】作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,如圖,∵⊙P的圓心坐標是(-3,a),∴OC=3,PC=a,把x=-3代入y=-x得y=3,∴D點坐標為(-3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.【點睛】本題主要考查了垂徑定理、一次函數(shù)圖象上點的坐標特征以及勾股定理,熟練掌握圓中基本定理和基礎圖形是解題的關鍵.4、A【分析】根據(jù)旋轉的性質說明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【詳解】解:根據(jù)旋轉的性質可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=1.故選:A.【點睛】本題主要考查了旋轉的性質、勾股定理,在解決旋轉問題時,要借助旋轉的性質找到旋轉角和旋轉后對應的量.5、B【分析】首先由圓的性質得出OC=OD,進而得出∠CDO=∠DCO,∠COD=70°,然后由圓周角定理得出∠CAD.【詳解】由已知,得OC=OD∴∠CDO=∠DCO=55°∴∠COD=180°-∠CDO-∠DCO=180°-55°-55°=70°∵∠COD為弧CD所對的圓心角,∠CAD為弧CD所對的圓周角∴∠CAD=∠COD=35°故答案為B.【點睛】此題主要考查對圓周角定理的運用,熟練掌握,即可解題.6、C【解析】解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.7、B【分析】根據(jù)切線的性質以及圓周角定理求解即可.【詳解】連接OA∵為圓的切線∴∵∴∴故答案為:B.【點睛】本題考查了圓的角度問題,掌握切線的性質以及圓周角定理是解題的關鍵.8、D【解析】試題解析:∵點A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函數(shù)y=的圖象上,∴y1=-;y1=-1;y3=,
∵>->-1,
∴y3>y1>y1.
故選D.9、A【分析】根據(jù)拋物線的圖像和表達式分析其系數(shù)的值,通過特殊點的坐標判斷結論是否正確.【詳解】∵函數(shù)圖象開口向上,∴,又∵頂點為(,1),∴,∴,由拋物線與軸的交點坐標可知:,∴c>1,∴abc>1,故①錯誤;∵拋物線頂點在軸上,∴,即,又,∴,故②錯誤;∵頂點為(,1),∴,∵,∴,∵,∴,則,故③錯誤;由拋物線的對稱性可知與時的函數(shù)值相等,∴,∴,故④正確.綜上,只有④正確,正確個數(shù)為1個.故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系,根據(jù)二次函數(shù)圖象以及頂點坐標找出之間的關系是解題的關鍵.10、C【分析】由平行四邊形的性質得出CD∥AB,進而得出△DEF∽△BAF,再利用相似三角形的性質可得出結果.【詳解】∵四邊形ABCD為平行四邊形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴,∴.故選C.【點睛】本題考查了相似三角形的性質與判定及平行四邊形的性質,解題的關鍵是掌握相似三角形的面積比等于相似比的平方.11、B【解析】用關于原點的對稱點的坐標特征進行判斷即可.【詳解】點P(-1,2)關于原點的對稱點的坐標為(1,-2),故選:B.【點睛】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反.12、D【分析】過點F作FH⊥AD,垂足為點H,設,根據(jù)勾股定理求出AC,F(xiàn)H,AH,設,根據(jù)軸對稱的性質知,在Rt△BFE中運用勾股定理求出x,通過證明,求出DH的長,根據(jù)求出a的值,進而求解.【詳解】過點F作FH⊥AD,垂足為點H,設,由題意知,,,由勾股定理知,,,∵與關于直線DE對稱,∴,,設,則,在Rt△BFE中,,解得,,即,,∵,∴,,∴,∵,∴,∴,∴,∵,∴解得,,∴,故選D.【點睛】本題考查了軸對稱圖形的性質,相似三角形的判定與性質,勾股定理,等腰直角三角形的性質等,巧作輔助線證明是解題的關鍵.二、填空題(每題4分,共24分)13、60°【分析】連接AC,根據(jù)圓周角定理求出∠A的度數(shù),根據(jù)直徑所對的圓周角是直角得到∠ACB=90°,根據(jù)三角形內角和定理計算即可.【詳解】解:連接AC,
由圓周角定理得,∠A=∠CDB=30°,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∴∠CBA=90°-∠A=60°,
故答案為:60°.【點睛】本題考查的是圓周角定理的應用,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半、直徑所對的圓周角是直角是解題的關鍵.14、3【解析】首先得出△AEM∽△ABC,△CFM∽△CDA,進而利用相似三角形的性質求出即可.【詳解】∵AD∥BC∥EF,∴△AEM∽△ABC,△CFM∽△CDA,∵EM:BC=2:5,∴AMAC設AM=2x,則AC=5x,故MC=3x,∴CMAC故答案為:35【點睛】此題主要考查了相似三角形的判定與性質,得出AMAC15、(4,0).【分析】先把(1,0)代入y=x2-5x+m求出m得到拋物線解析式為y=x2-5x+4,然后解方程x2-5x+4=0得到拋物線與x軸的另一個交點的坐標.【詳解】解:把(1,0)代入y=x2-5x+m得1-5+m=0,解得m=4,所以拋物線解析式為y=x2-5x+4,當y=0時,x2-5x+4=0,解得x1=1,x2=4,所以拋物線與x軸的另一個交點的坐標為(4,0).故答案為(4,0).【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程問題.16、55【分析】連接OA,OB,根據(jù)圓周角定理可得解.【詳解】連接OA,OB,∵PA、PB分別切⊙O于點A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所對的圓周角和圓心角,∴∠C=∠AOB=55°.17、8【分析】根據(jù)△ABD是△COD關于點D的位似圖形,且△ABD與△COD的位似比是1:3,得出,進而得出假設BD=x,AE=4x,D0=3x,AB=y,根據(jù)△ABD的面積為1,求出xy=2即可得出答案.【詳解】過A作AE⊥x軸,∵△ABD是△COD關于點D的位似圖形,且△ABD與△COD的位似是1:3,∴,∴OE=AB,∴,設BD=x,AB=y∴DO=3x,AE=4x,C0=3y,∵△ABD的面積為1,∴xy=1,∴xy=2,∴AB?AE=4xy=8,故答案為:8.【點睛】此題考查位似變換,反比例函數(shù)系數(shù)k的幾何意義,待定系數(shù)法求反比例函數(shù)解析式,解題關鍵在于作輔助線.18、11【詳解】∵,∴(x-2)(x-4)=1.∴x-2=1或x-4=1,即x1=2,x2=4.∵等腰△ABC的腰長與底邊長分別是方程的兩個根,∴當?shù)走呴L和腰長分別為2和4時,滿足三角形三邊關系,此時△ABC的周長為:2+4+4=11;當?shù)走呴L和腰長分別為4和2時,由于2+2=4,不滿足三角形三邊關系,△ABC不存在.∴△ABC的周長=11.故答案是:11三、解答題(共78分)19、(1),頂點坐標為;(2)8;(3)①;②.【分析】(1)將點C代入表達式即可求出解析式,將表達式轉換為頂點式即可寫出頂點坐標;(2)根據(jù)題目分析可知,當點P位于拋物線頂點時,△ABP面積最大,根據(jù)解析式求出A、B坐標,從而得到AB長,再利用三角形面積公式計算面積即可;(3)①分三種情況:0<m≤1、1<m≤2以及m>2時,分別進行計算即可;②將h=9代入①中的表達式分別計算判斷即可.【詳解】解:(1)將點代入,得,解得,∴,∵,∴拋物線的頂點坐標為;(2)令,解得或,∴,,∴,當點與拋物線頂點重合時,△ABP的面積最大,此時;(3)①∵點C(0,-3)關于對稱軸x=1對稱的點的坐標為(2,-3),P(m,),∴當時,,當時,,當時,,綜上所述,;②當h=9時,若,此時方程無解,若,解得m=4或m=-2(不合題意,舍去),∴P(4,5).【點睛】本題為二次函數(shù)綜合題,需熟練掌握二次函數(shù)表達式求法及二次函數(shù)的性質,對于動點問題正確分析出所存在的所有情況是解題關鍵.20、(1)見解析;(2)①∠AQB=65°,②l弧AmB=23π.【解析】(1)連接OB,根據(jù)等腰三角形的性質得到∠OAB=∠OBA,∠CPB=∠CBP,再根據(jù)∠PAO+∠APO=90°,繼而得出∠OBC=90°,問題得證;(2)①根據(jù)等腰三角形的性質可得∠ABO=25°,再根據(jù)三角形內角和定理可求得∠AOB的度數(shù),繼而根據(jù)圓周角定理即可求得答案;②根據(jù)弧長公式進行計算即可得.【詳解】(1)連接OB,∵CP=CB,∴∠CPB=∠CBP,∵OA⊥OC,∴∠AOC=90°,∵OA=OB,∴∠OAB=∠OBA,∵∠PAO+∠APO=90°,∴∠ABO+∠CBP=90°,∴∠OBC=90°,∴BC是⊙O的切線;(2)①∵∠BAO=25°,OA=OB,∴∠OBA=∠BAO=25°,∴∠AOB=180°-∠BAO-∠OBA=130°,∴∠AQB=∠AOB=65°;②∵∠AOB=130°,OB=18,∴l(xiāng)弧AmB==23π.【點睛】本題考查了圓周角定理,切線的判定等知識,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.21、(1),;(2)C(-3,0),S=6;(3)或【分析】(1)根據(jù)題意把A的坐標代入反比例函數(shù)的圖像與一次函數(shù),分別求出k和b,從而即可確定反比例函數(shù)和一次函數(shù)的解析式;(2)由題意先求出C的坐標,再利用三角形面積公式求出ΔAOC的面積;(3)根據(jù)函數(shù)的圖象即可得出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.【詳解】解:(1)將點A(1,4)代入反比例函數(shù)的圖像與一次函數(shù),求得以及,所以反比例函數(shù)和一次函數(shù)的解析式分別為:和;(2)因為C在一次函數(shù)的圖象上以及x軸上,所以求得C坐標為(-3,0),則有OC=3,ΔAOC以OC為底的高為4,所以ΔAOC的面積為:;(3)由可知一次函數(shù)的值大于反比例函數(shù)的值,把B(m,-2)代入,得出m=-2,即B(-2,-2),此時當或時,一次函數(shù)的值大于反比例函數(shù)的值.【點睛】本題考查一次函數(shù)與反比例函數(shù)的交點問題,用待定系數(shù)法求一次函數(shù)和反比例函數(shù)的解析式及利用圖象比較函數(shù)值的大小,解題的關鍵是確定交點的坐標.22、(1)BD=2;(2)見解析;(3)四邊形ABCD是菱形,理由見解析.菱形ABCD得面積為6.【分析】(1)根據(jù)題意連結BD,利用切線定理以及勾股定理進行分析求值;(2)根據(jù)題意連結OB,利用垂直平分線性質以及切線定理進行分析求值;(3)由題意可知四邊形ABCD是菱形,結合勾股定理利用菱形的判定方法進行求證.【詳解】解:(1)連結BDDE=CE∴∠DCE=∠EDC∵⊙O與CD相切于點D,∴OD⊥DC,∠ODC=90°∠ODE+∠CDE=90°∠DOC+∠DCO=90°,∠DCE=∠EDC∠ODE=∠DOEDE=OE∵在⊙O中,OE=ODOE=OD=DE∠DOE=60°∵在⊙O中,AE⊥DBBD=2DF∵在Rt△COE中,∠ODF-90°-∠DOE=90°-60°=30°∴OD=2OF∵EF=1,設半徑為R,OF=OE-FE=R-1∴R=2(R-1),解得R=2∴BD=2DF=2(2)連結OB∵在⊙O中,AE⊥DBBF=DFAC是DB的垂直平分線∴OD=0B,CD=CB∴∠ODB=∠OBD,∠CDB=∠CBD∴∠ODB+∠CDB=∠OBD+∠CBD即∠ODC=∠OBC由(1)得∠ODC=90°∴∠OBC=90°即OB⊥BC又OB是⊙O的半徑∴CB是⊙O的切線(3)四邊形ABCD是菱形,理由如下∵由(1)得在⊙O中,∠DOE=60°,∠ODC=90°∴∠DAO=∠DOE=30°∵由(1)得∠ODC=90°∴∠OCD=90°-∠DOC=90°-60°=30°∴∠DAO=∠OCD∴DA=CD∵由(2)得AD=AB,CD=BC∴AD=DC=BC=AB∴四邊形ABCD是菱形∵在Rt△AFD中,DF=,∠DAC=30°∴AD=2DF=2∵四邊形ABCD是菱形∴AC=2AF=6,BD=2DF=2∴菱形ABCD得面積為:×AC×DB=×6×2=6.【點睛】本題考查切線的性質、等邊三角形的判定和性質、菱形的判定和性質以及解直角三角形,熟練掌握并綜合利用其進行分析是解題關鍵.23、(1)見解析;(2)見解析.【解析】(1)依據(jù)題意可得到FE=AB=DC,∠F=∠EDC=90°,F(xiàn)H∥EC,利用平行線的性質可證明∠FHE=∠CED,然后依據(jù)AAS證明△EDC≌△HFE即可;
(2)首先證明四邊形BEHC為平行四邊形,再證明鄰邊BE=BC即可證明四邊形BEHC是菱形.【詳解】(1)證明:∵矩形FECG由矩形ABCD旋轉得到,∴FE=AB=DC,∠F=∠EDC=90°,F(xiàn)H∥EC,∴∠FHE=∠CED.在△EDC和△HFE中,,∴△EDC≌△HFE(AAS);(2)∵△EDC≌△HFE,∴EH=EC.∵矩形FECG由矩形ABCD旋轉得到,∴EH=EC=BC,EH∥BC,∴四邊形BEHC為平行四邊形.∵∠BCE=60°,EC=BC,∴△BCE是等邊三角形,∴BE=BC,∴四邊形BEHC是菱形.【點睛】本題主要考查的是旋轉的性質、菱形的判定,熟練掌握相關圖形的性質和判定定理是解題的關鍵.24、(1)75°;(2)①見解析②【分析】(1)根據(jù)題意利用等腰三角形性質以及等量代換求∠BAE的度數(shù);(2)①由正方形的對稱性可知,∠DAF=∠DCF=15°,從而證明△BCF≌△ECF,求證DF=EF;②題意要求等式表示線段AB,CF,EF的數(shù)量關系,利用等腰直角三角形以及等量代換進行分析.【詳解】(1)解:∵AB=BE,∴∠BAE=∠BEA.∵∠ABE=90°-60°=30°∴∠BAE=75°.(2)①證明:∴∠DAF=15°.連結CF.由正方形的對稱性可知,∠DAF=∠DCF=15°.∵∠BCD=90°,∠BCE=60°,∴∠DCF=∠ECF=∠DAF=15°.∵BC=EC,CF=CF,∴△DCF≌△ECF.∴DF=EF.②過C作CO垂直BD交于O,由題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同模板學校食堂承包經(jīng)營合同范本
- Unit2 He's cool(說課稿)2023-2024學年外研版(三起)四年級下冊
- 2025合同模板工程的變更范本
- 2025江蘇:安全責任寫進集體合同模板范本
- Unit1 School(說課稿)-2024-2025人教版(新起點)英語一年級上冊
- 2023七年級語文上冊 第四單元 綜合性學習 少年正是讀書時說課稿 新人教版
- Unit5 I'm cleaning my room(說課稿)-2023-2024學年人教精通版英語五年級下冊001
- 2024年九年級語文下冊 第二單元 第5課 孔乙己說課稿 新人教版
- 2024-2025學年高中化學下學期第20周 常見氣體的制備說課稿
- Unit 1 people of achievement Reading for writing 說課稿-2024-2025學年高中英語人教版(2019)選擇性必修第一冊
- 進模模具設計
- 完整,滬教版小學四年級英語上冊單詞表
- 2021年高考化學真題和模擬題分類匯編專題20工業(yè)流程題含解析
- 2023年北京市高考作文評分標準及優(yōu)秀、滿分作文
- 2023年大唐尿素投標文件
- 《鋼鐵是怎樣煉成的》名著閱讀(精講課件) 初中語文名著導讀
- 縮窄性心包炎課件
- 《工程電磁場》配套教學課件
- 職位管理手冊
- 東南大學 固體物理課件
- 行政人事助理崗位月度KPI績效考核表
評論
0/150
提交評論