山東省鄄城一中下學(xué)期2023年高三第二次聯(lián)考數(shù)學(xué)試卷(含答案解析)_第1頁
山東省鄄城一中下學(xué)期2023年高三第二次聯(lián)考數(shù)學(xué)試卷(含答案解析)_第2頁
山東省鄄城一中下學(xué)期2023年高三第二次聯(lián)考數(shù)學(xué)試卷(含答案解析)_第3頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.2.如圖所示的程序框圖輸出的是126,則①應(yīng)為()A. B. C. D.3.一個幾何體的三視圖如圖所示,正視圖、側(cè)視圖和俯視圖都是由一個邊長為的正方形及正方形內(nèi)一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.4.向量,,且,則()A. B. C. D.5.函數(shù)在的圖象大致為A. B.C. D.6.設(shè)a,b,c為正數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件7.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12808.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2409.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.10.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是11.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.512.設(shè)雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.為了了解一批產(chǎn)品的長度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進行檢測,如圖是檢測結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標準,單件產(chǎn)品長度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為__________.14.在平面直角坐標系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.15.在中,為定長,,若的面積的最大值為,則邊的長為____________.16.設(shè)全集,,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.18.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.19.(12分)已知數(shù)列是等差數(shù)列,前項和為,且,.(1)求.(2)設(shè),求數(shù)列的前項和.20.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關(guān)于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.21.(12分)已知橢圓,過的直線與橢圓相交于兩點,且與軸相交于點.(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對稱點為,證明:直線過軸上的定點.22.(10分)已知三點在拋物線上.(Ⅰ)當(dāng)點的坐標為時,若直線過點,求此時直線與直線的斜率之積;(Ⅱ)當(dāng),且時,求面積的最小值.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.2.B【答案解析】試題分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加S=2+22+…+2n的值,并輸出滿足循環(huán)的條件.∵S=2+22+…+21=121,故①中應(yīng)填n≤1.故選B點評:算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導(dǎo)致錯誤.3.C【答案解析】

畫出直觀圖,由球的表面積公式求解即可【題目詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【答案點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.4.D【答案解析】

根據(jù)向量平行的坐標運算以及誘導(dǎo)公式,即可得出答案.【題目詳解】故選:D【答案點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.5.A【答案解析】

因為,所以排除C、D.當(dāng)從負方向趨近于0時,,可得.故選A.6.B【答案解析】

根據(jù)不等式的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【題目詳解】解:,,為正數(shù),當(dāng),,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【答案點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合不等式的性質(zhì)是解決本題的關(guān)鍵.7.A【答案解析】

根據(jù)二項式展開式的公式得到具體為:化簡求值即可.【題目詳解】根據(jù)二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【答案點睛】求二項展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).8.A【答案解析】

利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【題目詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【答案點睛】本題考查排列、組合的應(yīng)用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.9.B【答案解析】

根據(jù)焦點所在坐標軸和漸近線方程設(shè)出雙曲線的標準方程,結(jié)合焦點坐標求解.【題目詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設(shè)雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【答案點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導(dǎo)致方程形式出錯.10.B【答案解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【題目詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【答案點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.11.D【答案解析】

利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【題目詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【答案點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.12.C【答案解析】

求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【題目詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【答案點睛】本題主要考查了求雙曲線的方程,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.100.【答案解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時常犯的錯誤.14.【答案解析】

設(shè):,:,利用點到直線的距離,列出式子,求出的值即可.【題目詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【答案點睛】本題主要考查點到直線的距離公式的運用,并結(jié)合圓的方程,垂徑定理的基本知識,屬于中檔題.15.【答案解析】

設(shè),以為原點,為軸建系,則,,設(shè),,,利用求向量模的公式,可得,根據(jù)三角形面積公式進一步求出的值即為所求.【題目詳解】解:設(shè),以為原點,為軸建系,則,,設(shè),,則,即,由,可得.則.故答案為:.【答案點睛】本題考查向量模的計算,建系是關(guān)鍵,屬于難題.16.【答案解析】

先求出集合,,然后根據(jù)交集、補集的定義求解即可.【題目詳解】解:,或;∴;∴.故答案為:.【答案點睛】本題主要考查集合的交集、補集運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ),.【答案解析】

(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大??;(Ⅱ)通過面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【題目詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【答案點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關(guān)系,考查了運算能力.18.(1)單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間(2)證明見解析【答案解析】

(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的正負判斷單調(diào)性,(2)整理,化簡為,令,求的單調(diào)性,以及,即證.【題目詳解】解:(1)函數(shù)定義域為,則,令,,則,當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;故,,,,故函數(shù)的單調(diào)遞減區(qū)間為,,無單調(diào)遞增區(qū)間.(2)證明,即為,因為,即證,令,則,令,則,當(dāng)時,,所以在上單調(diào)遞減,則,,則在上恒成立,所以在上單調(diào)遞減,所以要證原不等式成立,只需證當(dāng)時,,令,,,可知對于恒成立,即,即,故,即證,故原不等式得證.【答案點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式,函數(shù)的最值問題,屬于中檔題.19.(1)(2)【答案解析】

(1)由數(shù)列是等差數(shù)列,所以,解得,又由,解得,即可求得數(shù)列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數(shù)列的前n項和.【題目詳解】(1)由題意,數(shù)列是等差數(shù)列,所以,又,,由,得,所以,解得,所以數(shù)列的通項公式為.(2)由(1)得,,,兩式相減得,,即.【答案點睛】本題主要考查等差的通項公式、以及“錯位相減法”求和的應(yīng)用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎(chǔ),準確計算求和是關(guān)鍵,易錯點是在“錯位”之后求和時,弄錯等比數(shù)列的項數(shù),能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計算能力等.20.(1)見解析;(2).【答案解析】

(1)設(shè)點、,求出直線、的方程,與拋物線的方程聯(lián)立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設(shè)點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關(guān)于的表達式,結(jié)合不等式可解出實數(shù)的取值范圍.【題目詳解】(1)設(shè)點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設(shè)點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達定理得,,,得,設(shè)點到直線的高為,則,,,,解得,因此,實數(shù)的取值范圍是.【答案點睛】本題考查直線與直線平行的證明,考查實數(shù)的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎(chǔ)知識,考查運算求解能力,考查數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論