![世界經(jīng)濟(jì)論壇-在制造業(yè)中從人工智能中釋放價值(英)-2022.12-26正式版_第1頁](http://file4.renrendoc.com/view/dd6d3ab01cb62da9fd3dcc41ea3678be/dd6d3ab01cb62da9fd3dcc41ea3678be1.gif)
![世界經(jīng)濟(jì)論壇-在制造業(yè)中從人工智能中釋放價值(英)-2022.12-26正式版_第2頁](http://file4.renrendoc.com/view/dd6d3ab01cb62da9fd3dcc41ea3678be/dd6d3ab01cb62da9fd3dcc41ea3678be2.gif)
![世界經(jīng)濟(jì)論壇-在制造業(yè)中從人工智能中釋放價值(英)-2022.12-26正式版_第3頁](http://file4.renrendoc.com/view/dd6d3ab01cb62da9fd3dcc41ea3678be/dd6d3ab01cb62da9fd3dcc41ea3678be3.gif)
![世界經(jīng)濟(jì)論壇-在制造業(yè)中從人工智能中釋放價值(英)-2022.12-26正式版_第4頁](http://file4.renrendoc.com/view/dd6d3ab01cb62da9fd3dcc41ea3678be/dd6d3ab01cb62da9fd3dcc41ea3678be4.gif)
![世界經(jīng)濟(jì)論壇-在制造業(yè)中從人工智能中釋放價值(英)-2022.12-26正式版_第5頁](http://file4.renrendoc.com/view/dd6d3ab01cb62da9fd3dcc41ea3678be/dd6d3ab01cb62da9fd3dcc41ea3678be5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
IncollaborationwithMEXTTechnologyCenterUnlockingValuefromArtificialIntelligenceinManufacturingWHITEPAPERDECEMBER 2022Cover:JianFan,GettyImages–Inside:GettyImagesContentsForewordExecutivesummaryIntroduction1UnlockingvalueinmanufacturingthroughAI2SheddinglightoncommonbarrierstoindustrialAIadoption3AcollectionofAIapplicationsinmanufacturing4Astep-by-stepapproachtoimplementingscalableindustrialAIapplicationsConclusionContributorsEndnotesDisclaimerThisdocumentispublishedbytheWorldEconomicForumasacontributiontoaproject,insightareaorinteraction.Thefindings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.?2022WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.UnlockingValuefromArtificialIntelligenceinManufacturing 2December2022 UnlockingValuefromArtificialIntelligenceinManufacturingForeword?zgürBurakAkkolChairman,TurkishEmployers’AssociationofMetalIndustriesTürkiyehasestablisheditselfasakeyglobalplayerinadvancedmanufacturingandaimstoboostitspositionthroughFourthIndustrialRevolutiontechnologies.Inrecentdecades,thecountryhasmadesignificanteffortstopositionitselfasaglobalinnovationhub,excellingindevelopingstate-of-the-arttechnologiesinground-breakingcompaniesinvariousfields.Artificialintelligence(AI)technologyapplicationsarepartofthiseffort.Inprinciple,AIcouldunlockmorethan$13trillionintheglobaleconomyandboostGDPby2%peryear.1However,companiesstruggletotapintothevaluethatAIapplicationscancreate.ThispaperseekstouncoverthehiddenpotentialofAIinthemanufacturingsectorandtherespectiveend-to-endsystemsbyprovidingpracticalusecasesandcriticalenablerstohelpharnessitspotential.Coupledwiththeenergycrisisandmaterialshortagesfacingtheworld,manufacturingplayersneedtogobeyondtraditionaloperatingmethodstodriveefficiencyandsustainability.Thetwinchallengesoftechnologicalprogressandsocio-politicaldistresscallfornewformsofcooperationthatrespondtoheighteneddemandforlocalizationwhilerecognizingthedriversofconnectivitythatshapeglobalimpact.Acknowledgingthis,theCentrefortheFourthIndustrialRevolutioninTürkiye–mandatedbythe
JeremyJurgensManagingDirector,WorldEconomicForumMinistryofIndustryandTechnologyandestablishedbytheTurkishEmployers’AssociationofMetalIndustries(MESS)–joinedtheWorldEconomicForum’sCentrefortheFourthIndustrialRevolutionNetwork,theforemostplatformhelpingleadersanticipateemergingtechnologiesanddrivetheirinclusiveandsustainableadoption.Thenetworklinkson-the-groundexperienceandactionwithglobalnetwork-basedcollaboration,learningandscaling.ThiswhitepaperisanoutputoftheongoingpartnershipbetweentheForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,theCentrefortheFourthIndustrialRevolutionAffiliateinTürkiyeandMESS.Ithighlightscasestudiesfromorganizationsontheimpact,feasibilityandscalabilityofAIinmanufacturing.Itidentifiesseveralopportunitiesandlessonsfromthecommunityonhowtoincreaseoperationalefficiency,sustainabilityandworkforceengagementinmanufacturingandvaluechainsbyusingAI.Wehopethisreportwillprovidedecision-makerswithabetterunderstandingofhowtounlocktheuntappedpotentialofindustrialartificialintelligence(AI).Welookforwardtocollaboratingwithyoutodeploythesetechnologiesresponsibly.UnlockingValuefromArtificialIntelligenceinManufacturing 3ExecutivesummaryRecentglobaldevelopmentsandanever-growinglistofshocksanddisruptionshaveputfurtherstrainonalreadyshakenglobalvaluechains.Thecomplexityofcurrentchallengesimpactingmanufacturingandvaluechainscallsfortheneedtogobeyondthetraditionalmeansofdrivingproductivitytouncoverthenextwaveofvalueforbusinesses,theworkforceandtheenvironment.Artificialintelligence(AI)isacrucialenablerofindustrytransformation,openingnewwaystoaddressbusinessproblemsandunlockinnovationwhiledrivingoperationalperformance,sustainabilityandinclusion.EventhoughtheimpactofAIapplicationsonmanufacturingprocessesisknown,thefullopportunityfromtheirdeploymentisstilltobeuncoveredduetoanumberoforganizationalandtechnicalroadblocks.Recognizingthisneed,theCentrefortheFourthIndustrialRevolutionTürkiye,togetherwiththeWorldEconomicForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,convenedindustry,technologyandacademicexpertstoshedlightonthesechallengesandproposeastep-by-stepapproachtoovercomethem.TheconsultationsrevealedsixmainchallengeshinderingtheadoptionandscalingofAIapplicationsinmanufacturing:AmismatchbetweenAIcapabilitiesandoperationalneedsTheabsenceofastrategicapproachandleadershipcommunicationInsufficientskillsattheintersectionofAIandoperationsDataavailabilityandtheabsenceofadatagovernancestructureAlackofexplainableAImodelsinmanufacturingSignificantcustomizationeffortsacrossmanufacturingusecases
Theconsultationsshowthatleadingmanufacturershavesuccessfullyovercomethechallengesmentionedabove,implementingavarietyofAIapplicationsandachievingapositiveimpactonoperationalperformance,sustainabilityandworkforceengagement,mainlyinsixareas:healthandsafety,quality,maintenance,productionprocesses,thesupplychain,andenergymanagement.WhileopportunitiesenabledbyAIinmanufacturingarepromisingandattractingmanyleaders,organizationsarelookingforacommonframeworkthatoutlineshowtoimplementAIsolutionsandensureasuccessfulreturnoninvestment.Basedontheconsultations,thiswhitepaperpresentsonestep-by-stepprocessasanexampleofhowitispossibletoovercomebarriers,usingtheAINavigator2developedbytheINCInventionCenterasareference:Phase0:Initiationtobuildthefundamentals–strategy,dataandworkforcePhase1:Ideationtoidentifypotentialusecasesandconductapre-selectionPhase2:AssessmenttoselectusecasesandidentifyprioritiesviagapanalysisPhase3:FeasibilitytocompleteallrequiredtestsandstudiesPhase4:Implementation,whichrequiresiterationandpilotingusingagileprojectmanagementMovingforward,theWorldEconomicForumandtheCentrefortheFourthIndustrialRevolutionTürkiyewillcontinuetoworkcloselywithstakeholdersintheCentrefortheFourthIndustrialRevolutionNetworkandacrossindustriestoacceleratethejourneytocapturevaluefromAIinmanufacturingglobally.ItwilloffertheTurkishEmployers’AssociationofMetalIndustries(MESS)TechnologyCentreasauniquetestingandcollaborationsystemforbusinessestopilotnewAIapplicationsandfosteracollaborativeapproachamongadiversegroupofstakeholderstoensuretherightAIcapabilitiesarebuiltinmanufacturingandrolledoutworldwide.UnlockingValuefromArtificialIntelligenceinManufacturing 4IntroductionCompaniesacrossvaluechainsarenowfacinganenergycrisisandmaterialandkeycomponentshortages,evenastheyarestillrecoveringfromandadaptingtoCOVID-19impacts.Thecomplexityofthechallengesimpactingoperationscallsfortheneedtogobeyondthetraditionalmeansofdrivingproductivitytouncoverthenextwaveofvalueandaddresssustainabilityandworkforcechallenges.Artificialintelligence(AI)canenableanewerainthedigitaltransformationjourney,offeringtremendouspotentialtotransformindustriestogaingreaterefficiency,sustainabilityandworkforceengagementbygeneratingnewinsightsfromlargeamountsofdata.However,despitethispromisingvaluecreationpotential,thedeploymentofAIinmanufacturingandvaluechainsisstillbelowexpectedlevels.Basedonaglobalsurveyconductedoverthelastfouryearsofmorethan3,000companiesacrossindustriesandgeographies,agrowingnumberofcompaniesrecognizethebusinessimperativetoimprovetheirAIcompetencies:–70%ofrespondentsunderstandhowAIcangeneratebusinessvalue–59%haveanAIstrategyinplace–57%affirmthattheircompaniesarepilotingordeployingAI.Despitethesetrends,only1in10companiesbelievetheygeneratesignificantfinancialbenefitswithAI.3
WhilemanufacturersacknowledgetheimportanceandurgencyofembeddingAIintheirprocessesandwhileleadingcompanieshavealreadyinternalizeditintheirbusinessprocesses,manyarebecomingdisillusionedwiththeireffortstocapturevaluefromitandlagindevelopingtherightAIcapabilities.UnderstandingthepurposeandroleofAIiskeytosolvingmanufacturingchallenges.Withaproblem-orientedapproach,AIeffortscanbelinkedtoclearbusinesstargets,givingbusinessunitsandbusinessfunctionsajointinterestinmakingthetransformationsuccessful.4ThiswhitepapershedslightonthebenefitsthatcanbeachievedthroughindustrialAIandthesuccessfulAIapplicationsimplementedacrossindustries,lessonslearnedandtangibleimpacts.ConsultationsconductedwiththemultistakeholderinitiativecommunityfindthatindustrialAIhelpspeopleworkinasmarter,saferandmoreefficientway.However,tounlockitsfullpotential,companiesrequireanunderstandingofcurrentbarrierstoadoptionandastructuredapproachtoovercomethem.Therefore,thispaperalsopresentsoneexampleofastep-by-stepguidetosuccessfullyimplementingscalableindustrialAIusecases.UnlockingValuefromArtificialIntelligenceinManufacturing 5UnlockingvalueinmanufacturingthroughAIAIapplicationsinmanufacturinghelpincreaseoperationalperformance,drivethesustainabilityagendaandempowertheworkforce.Theartificialintelligence(AI)revolutionallowstheconversionoflargeamountsofdataintoactionableinsightsandpredictionsthatcanprovideimpetustodata-drivenprocesses.ManufacturingcompaniescapturevaluefromAIusingdifferentmechanisms,themostcommonbeingeliminatingredundantwork,solvingexistingproblemsandrevealinghiddenvaluebyanalysingandrecognizingpatternsindata.AIisappliedtoaugmenttaskssuchasclassification,continuousestimation,clustering,optimization,anomalydetection,rankings,recommendationsanddatagenerationtosolveindustrialproblems.5ConsultationswithseniorexecutivesfromtheWorldEconomicForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,aswellasmembersandpartnersoftheCentrefortheFourthIndustrialRevolution
Türkiye,findthatAIcanhelpdriveastep-changeinmanufacturing,yieldingsignificantbenefitsinthreecategories(figure1):–Operationalperformancebyautomatingandoptimizingroutineprocessesandtasks,increasingproductivityandoperationalefficiencies,improvingquality(e.g.reducingdefects,forecastingunwantedfailures)andoptimizingproductionparameters–Sustainabilitybyoptimizingmaterialandenergyusage,increasingenergyefficiencies,reducingscrapratesandextendingmachinelifespans–Workforceaugmentationbyguidingthedecision-makingprocessandparametersetting,enhancingtheaccuracyofpredictionsandforecasting,reducingrepetitivetasksandincreasinghuman-robotinteractionsUnlockingValuefromArtificialIntelligenceinManufacturing 6FIGURE1 DimensionsofvaluecreationwithAIinmanufacturingOperationalperformancePerformance(e.g.yieldoptimization)Throughput(e.g.fewerunwantedbreakdowns,decreasedleadtime)Quality(e.g.fewerprocessdefectsandfailurerates)Businessuptime(ductivetimeandcapacity)WorkforceaugmentationDecision-makingandplanningsupportCollaborationPredictionandforecastingaccuracyTaskautomationRisk(e.g.feedbackmechanismtoavoidincidentsandalarms)SustainabilityMaterialefficiencyEnergyefficiency(e.g.energysavingsandthermalefficiency)MachinelifetimeScraprateandusedmaterialUnlockingValuefromArtificialIntelligenceinManufacturing 7SheddinglightoncommonbarrierstoindustrialAIadoptionImplementingAIsolutionsrequirescontinuousprojectmanagementefforts,expectationmanagementandthenecessaryresources.Despitethispotential,companieshavenotyetfullyrealizedthevisionofAI-poweredmanufacturingsystems.TounlocktheuntappedvalueofindustrialAI,pinpointingthesourceofacompany’sstrugglesanddefiningtheroadblocksopenanewpathtothinkthroughandderivetherightsolutionstoovercomethem.AsthebarrierstoAIadoptionstemmainlyfromorganizational,strategicandtechnicalFIGURE2 BarrierstoAIadoptioninmanufacturing
components,understandingthemwillhelpidentifyapathwaytoimplementscalableAIapplications.Consultationswiththecommunityofover35senioroperationsexecutives,technologyexpertsandacademicshaveidentifiedsixchallengeshinderingtheadoptionofAIinmanufacturingandvaluechains(figure2).MismatchbetweenAIAbsenceofastrategicInsufficientskillsatthecapabilitiesandoperationalapproachandleadershipintersectionofAIandneedscommunicationoperationsDataavailabilityandLackofexplainableAISignificantcustomizationabsenceofadatamodelsinmanufacturingeffortsacrossgovernancestructuremanufacturingusecasesUnlockingValuefromArtificialIntelligenceinManufacturing 8MismatchbetweenAIcapabilitiesandoperationalneedsManufacturershaveoftenselectedAIprojectsbasedonexistingtechnicalcapabilitiesinsteadoffocusingontheimpactonbusinessoperations.ThematchbetweenbusinesspainpointsandAItechnologiesisnotalwaysthoroughlyconsidered.Therefore,AIsolutionsmaybetechnicallyfeasiblebutfailtosolvearelevant,impactfulproblemin
operations.Thiscausesamismatchofexpectationsandhinderstheirwideradoptioninmanufacturing.Buildingasolidbusinesscasewithaproblem-orientedapproachthatclearlydefinesbusinessneedsandevaluatingthevalueofanAIsolutioncomparedtoalternativesolutionsarethefirststepsinovercomingthatbarriertoadoptionandscale.AbsenceofastrategicapproachandleadershipcommunicationAclearcompany-wideAIstrategyandcommunicationplanareoftenignored.Withouttherightsponsorsandcommittedleaderstostartthedialogueandcollectthebuy-infromend-users,theonboardingofAIapplicationsacrossthecompanycan’toccurdue
toworkforcereluctance.AsAIischangingthewaysofworking,communicatingthestrategicapproach,benefitsandnewprocessescanhelpincreaseend-users’willingnesstoembraceitintheirroutines.InsufficientskillsattheintersectionofAIandoperationsExternalconsultantsorinformationtechnology(IT)expertswhohavealimitedunderstandingofthemanufacturingrequirementsontheshopflooroftenleadAIprojects.However,tobesuccessful,AIapplicationsrequiredevelopment
andimplementationbycross-functionalteamswithdiverseexpertiseattheconvergenceofIT,operationaltechnology(OT),dataandAItechnologies.Thisrequiresupskillingtheworkforceandattractingnewtalentinmanufacturing.UnlockingValuefromArtificialIntelligenceinManufacturing 9DataavailabilityandtheabsenceofadatagovernancestructureApplyingmachinelearningmodelsrequirestrainingonlargeamountsofdatatorecognizepatternsandrelationships.6However,manufacturingcompaniesoftenrelyonsmalldatasetsandfragmenteddata,hinderingtheaccuracyoftheresultinginsights.Evenwhenavailable,thesedatasetsmaynotrepresentappropriatefailurecasesorrelevantprocesssituationsandaremostlynotinteroperable.
Creatingasinglesourceofinformationensuresthatbusinessesoperatebasedonstandardized,relevantdataacrosstheorganization.Toovercomethischallenge,sharingdataacrosscompanies’boundariescansupportjointeffortstoadoptartificialintelligencetechniquesinthemanufacturingsectorandrely,inturn,onasetoforganizationalandtechnologicalsuccessfactors.7LackofexplainableAImodelsinmanufacturingTheperceptionofAImodelsascomplex,non-transparentanduninterpretablesystemshinderstheirdeployment.ManufacturersneedAImodelsthatareeitheropenandtransparenttobuildtrustinthepredictionsandspecificresultsorinterpretablefordomainexpertstoacceptthem.AI-providedpredictionsneedtobemeaningful,explainable
andaccurateandhaveawarningmechanisminplacetominimizerisks.ExplainableAItoolsandtechniquesallowexpertstoobtainjustificationsfortheirresultsinaformatthatmanufacturinguserscanunderstand.ThegreatertheconfidenceintheAI-poweredoutput,thefasterandmorewidelyAIdeploymentcanhappen.SignificantcustomizationeffortsacrossmanufacturingusecasesFactoriesarecomplexengineeredsystemsandAImodelsneedconfigurationtobeadaptedtoeachprocessandconformtoitsconstraints.Hence,itisnotpossibletosimplyapplytrainedAImodelsorpipelinesfromonemanufacturingusecasetoanother.Thedesignofthemachinelearningpipelineandthepre-processing,trainingand
testingofAImodelsstillneedmanualinterventionforcustomization,whichisnotyetfullyautomated.Additionally,industrialcompaniesstruggletofindcommerciallyavailablehardwareandsoftwarewithoff-the-shelfAIfeaturesthatrequireminorcustomization.Sheddinglightonthesechallengesandunderstandingthemcanhelpidentifytherightsolutionsandapproachestoovercomethem.UnlockingValuefromArtificialIntelligenceinManufacturing 10AcollectionofAIapplicationsinmanufacturingAIapplicationscanboostoperationalperformanceandleadtoapositiveimpactonsustainabilityandworkforceengagement.Consultationswithover35senioroperationsexecutivesandtechnologyexpertsfindthatleadingmanufacturingcompanieshavesuccessfullymanagedtoapproachandovercomethechallengesmentionedabovebystartingwiththeirbusinessneeds,outliningaclearstrategy,buildingcross-functionalcapabilitiesandputtingastrongerfocusondatagovernance,andselectingAImodelsthatmeettheirneeds.TheyhaveimplementedavarietyofAIapplicationsthathaveboostedtheiroperationalperformanceandledtoapositiveimpactonsustainabilityandworkforceengagement.
ToillustratethepotentialandfeasibilityofAIinmanufacturing,thecreationofanindustrialAIusecaselibrarywithinputfromthecommunityhasstarted.The23usecasescollectedacrossdifferentindustriescoversixmainapplicationareas:healthandsafety,quality,maintenance,productionprocess,supplychains,andenergymanagement(figure3).UnlockingValuefromArtificialIntelligenceinManufacturing 11FIGURE3 LeadingmanufacturersareimplementingavarietyofAIapplications1AIinmanufacturingusecases65Source:CompanyinterviewsEnergymanagementSupplychains–Energyoptimization–Futuredemandandprice–Electricitydemandforecastingforecasting–Heatingandcoolingoptimization–Supplychaincontroltower–Warrantyandservicemanagement
234Productionprocess–Processoptimization–Linebalancing–Productdesignanddevelopment–Processparameteroptimization–Productionplanning/decisionsupport
Healthandsafety–Employeehealth&safety:incidentprevention–Processsafety:advancedalarmanalyticsQuality–Qualityinspectioninassembly–Qualityassurance/defectinspection–Qualitytesting–QualitypredictionMaintenance–Machinehealthmonitoring:predictivemaintenance–MaintenanceplanningTheusecasescollectedprovidevaluableinsightsindicatingthebusinessneed,thesolutionimplementedandtheimpactachieved.Theapplicationsshowthatthereturnoninvestment(ROI)ispositiveandthepaybackperiodofthe
investmentsisusuallytangiblewithin1-2years.AfterpilotingtheAIapplicationsinonedivision,manufacturingcompanieseitherhavealreadydeployedtomultipledivisionsorhavethevisiontoscale.UnlockingValuefromArtificialIntelligenceinManufacturing 12TABLE1AcollectionofAIinmanufacturingusecasesUsecaseCompanySectorAIapplicationImpactModeldesignedasanexperiencedoperator/engineer–Totaltimeofalarmfloodsincontinuousestimationanddecreasedby40%classificationofalarms,detection–Numberofalarmsofnuisancealarms,alarmfloodProcesssafety:decreasedby50%Tüpra?,analysisandrecommendationadvancedEnergy–Timeefficiency:AlarmTürkiyeofbetterconfigurations.Rootalarmanalyticsrationalizationmeetingscauses,next-bestactionsandshortenedfrom4hourssafetysetpointsextractedfromtheto30minuteshistoricaldatathroughbasic&descriptiveanalyticsanddatasciencepre-processtechniquesHealthImagerecognitionbymonitoring–UnsafesituationsandEmployeetheshopfloorwithexistingactionsreducedby70-cameras,receivingreal-time80%health&Intenseye,Manufacturingalertnotificationsandenhancingsafety:incidentUSA–Withasaferenvironment,employeehealthandsafetypreventionamoreproductive(EHS)toeliminatelife-alteringworkforcewithincreasedinjuriesbusinessuptimecreatedExaminingtheeffective–Upto40%savingsachievedinenergyuseparametersontheframes–ScrapratereducedwhileReal-timespotMarturbeingweldedinroboticspotensuringsustainabilityinweldqualityFompak,Automotiveweldstations(weldquality)productionpredictionTürkiyeandpredictingthespotnugget–Costsreducedby60%diameterrealizedinlineinrealbypreventingtheuseoftimeexcessweldingmaterialsVisualinspectiontoensure–ProductivityincreasedDetectionofthecoatingqualityisgoodbyby11%Bosch,checkingpartsandsearchingfor–15millionpartscheckedcarboncoatingAutomotiveTürkiyecoatingdefectsinfourdifferenthadnoincidentsdefectsclasses:scratches,damages,blackinblack,silverQualityOptimizingqualityinspectionofcustomizedproductsbyQualitydeployingcloudservicesand–ProductivityincreasedbyassuranceafederatedlearningapproachHuawei,30-40%withfederatedProduction(localdatacollected,globalChina–Leadtimereducedlearninginoptimuminterpolatedandinturncontrolsharedbacktoalllocalfacilitieswithoutdisclosingsensibleproductorprocessdata)ExplainablecomputervisionmethodsusedtosupportfactoryQualityworkersindetectingassemblyinspectionEthonAI,ElectronicserrorsonprintedcircuitboardsinassemblySwitzerland(e.g.missing,faulty,orwrongverificationcomponents)viaahuman-AIinterface(camerasystemwithlivefeedback)
–10xlessimplementationeffortexpended–TrustworthinessofthesystemincreasedwiththeexplainablemodelUnlockingValuefromArtificialIntelligenceinManufacturing 13UsecaseCompanySectorAIapplicationImpactVisualinspectionoffibreratioin–ReportpreparationtimeforcustomercomplaintsyarncontentusingmicroscopicKarsu,andanalysisexpectedtoQualitytestingTextileimagestocheckproductionTürkiyedecreaseby90%qualityandtoanalysecustomer–ExpertrequirementcomplaintsforthesubjectwillbeeliminatedQuality
VisualinspectionofthequalityQualityK?rberofpharmaceuticalswhileAIinspectionrecognizespatternsinsteadofDigital,Pharmaceuticalsindrug-andmeasuringphysicalimagevalues,Germanypatientsafetywhichdecreasesthefalse-rejectofproducts
–Reductionoffalse-rejectratebyanaverageof88%–Detectionrateincreasedbyanaverageof38%–Approximately2xfastertime-to-marketachieved(transferability)invisionsetupAnAIenginethatpredictsthe–MachinecapacityPredictiveSchneiderdemagnetizationvoltagetoincreasedElectric,Electronicsreducethenumberofiterations–CapexinvestmentreducedqualityFranceduringrelaytestsinresidual–RejectionsreducedcurrentdeviceproductrangeThroughcombinationofdigitaltwinandinnovativeAI,processObeikananomalyconditionsanddriversQualityDigitalChemicalsdetectedpredictionSolutions,SaudiArabiaStatisticalprocesscontrolalgorithm,aprovenapproachofqualitycontrol,used
–Productivityandqualitysustainabilityincreased–OverallequipmenteffectivenessinPETlinesimprovedby20%–CustomercomplaintsreducedProductionprocess
Providingautomatedsoftwareto–Alloyusereducedby9%takepreventiveactionsearlyintheatsteelmillsProcessFeroLabs,SteelproductionprocesswithexplainableoptimizationUSAAImodelstoreducerawmaterial–FailurerateeliminateduseandminimizecostsandemissionsduringsteelproductionAI-basedvideoanalyticstolabel–Productivityincreasedby25%theactionsofmanualtasks–ByincreasingqualityandKhenda,toeliminateoperator-relatedLinebalancingAutomotiveefficiency,errorcostsTürkiyeerrorsandimprovemanualeliminatedandwastemanufacturingprocessesandanddefectiveproductsoptimizelinebalancingavoidedGeneratinginsightsintothecomplexinteractionsbetweenhundredsofprocessparametersProductionDataprophet,andtheirimpactonfinalqualityparameterFoundrybyusingdeeplearningalgorithmsSouthAfricaoptimizationApplicationthenprescribesnext-beststeptooptimizeproductionwithoutpoorquality
–Defectsreducedto0%froma6%ofhistoricaldefectrate–Numberofqualitystopsreducedfrom81to20perweekUnlockingValuefromArtificialIntelligenceinManufacturing 14UsecaseCompanySectorAIapplicationImpactProductionprocess
AdvanceddecisionsupportAr?elik,HomeAppliancesystemonTürkiyeperformancetestProcessGEP,USAChemicalsmanagement
Improvingcoolingtestperformanceindifferentanddynamicallychangingclimaticconditionstoshortenthetestdurationbyanin-housedecision-makingsystembasedonAIandmachinelearning(ML)ImplementingAI-enabledprocesscontrolstomanagecatalystingestionbasedonpressureandtemperaturechangesinthereactorandtomanagethetransferrates
–Servicecallrateimprovedby15.3%.–17.8%oftestcapacityincreasedbydecreas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年安全準(zhǔn)入考試練習(xí)試卷附答案
- 稽核人員上崗考試練習(xí)卷含答案
- 產(chǎn)房練習(xí)測試題附答案
- 9萬合同寫合同范本
- 農(nóng)村無證土地合同范本
- 保安公司勞務(wù)合同范本
- 2025年度房地產(chǎn)經(jīng)紀(jì)合同服務(wù)內(nèi)容與傭金收費標(biāo)準(zhǔn)規(guī)范
- 山東密封用填料及類似品制造市場前景及投資研究報告
- 買賣合同范本買方
- 1986電站用工合同范本
- 江西省上饒市高三一模理綜化學(xué)試題附參考答案
- 23-張方紅-IVF的治療流程及護(hù)理
- 因數(shù)和倍數(shù)復(fù)習(xí)思維導(dǎo)圖
- LY/T 2986-2018流動沙地沙障設(shè)置技術(shù)規(guī)程
- GB/T 16288-1996塑料包裝制品回收標(biāo)志
- 三級教育考試卷(電工)答案
- 醫(yī)院標(biāo)準(zhǔn)化運營管理課件
- 音樂考級-音程識別(基本樂科三級)考試備考題庫(附答案)
- 物業(yè)服務(wù)投標(biāo)文件
- 《數(shù)值分析》配套教學(xué)課件
- 山西省衛(wèi)生院社區(qū)衛(wèi)生服務(wù)中心信息名單目錄
評論
0/150
提交評論