初中數(shù)學華東師大八年級上冊第章全等三角形-探索三角形全等的條件PPT_第1頁
初中數(shù)學華東師大八年級上冊第章全等三角形-探索三角形全等的條件PPT_第2頁
初中數(shù)學華東師大八年級上冊第章全等三角形-探索三角形全等的條件PPT_第3頁
初中數(shù)學華東師大八年級上冊第章全等三角形-探索三角形全等的條件PPT_第4頁
初中數(shù)學華東師大八年級上冊第章全等三角形-探索三角形全等的條件PPT_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

我們知道:如果給出一個三角形三條邊的長度,那么因此得到的三角形都是全等.如果已知一個三角形的兩角及一邊,那么有幾種可能的情況呢?

每種情況下得到的三角形都全等嗎?1、角.邊.角

2、角.角.邊做一做1、角.邊.角

若三角形的兩個內(nèi)角分別是60°和80°它們所夾的邊為4cm,你能畫出這個三角形嗎?4cm60°80°

你畫的三角形與同伴畫的一定全等嗎?60°80°2、角.角.邊若三角形的兩個內(nèi)角分別是60°和40°,且40°所對的邊為4cm,你能畫出這個三角形嗎?60°40°60°40°分析:這里的條件與1中的條件有什么相同點與不同點?你能將它轉(zhuǎn)化為1中的條件嗎?80°

兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成“角邊角”或“ASA”。

兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫成“角角邊”或“AAS”。三角形全等的判定公理2:∵∠B=∠E,BC=EF,∠C=∠F∴ΔABC≌DEF(ASA)三角形全等的判定公理3:∵∠B=∠E,∠C=∠F,AC=DF∴ΔABC≌DEF(AAS)ABCDEFABCDEF練一練:1、完成下列推理過程:在△ABC和△DCB中,∠ABC=∠DCB∵BC=CB∴△ABC≌△DCB()ASAABCDO1234()公共邊∠2=∠1AAS∠3=∠4∠2=∠1CB=BC2、請在下列空格中填上適當?shù)臈l件,使△ABC≌△DEF。在△ABC和△DEF中∵∴△ABC≌△DEF()ABCDEFSSSAB=DEBC=EFAC=DFASA∠A=∠DAB=DE∠B=∠DEFAC=DF∠ACB=∠FAAS∠B=∠DEFBC=EF∠ACB=∠FBC=EF想一想:

如圖,O是AB的中點,∠A=∠B,△AOC與△BOD全等嗎?為什么?ABCDO我的思考過程如下:兩角與夾邊對應相等∴△AOC≌△BOD補充練習:DCBA1、在△ABC中,AB=AC,AD是邊BC上的中線,證明:∠BAD=∠CAD證明:∵AD是BC邊上的中線∴BD=CD(三角形中線的定義)在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠BAD=∠CAB(全等三角形對應角相等)AD是∠BAC的角平分線。求證:BD=CD。證明:∵AD是∠BAC的角平分線(已知)∴∠BAD=∠CAD(角平分線的定義)∵AB=AC(已知)∠BAD=∠CAD(已證)

AD=AD(公共邊)∴△ABD≌△ACD(SAS)∴BD=CD(全等三角形對應邊相等)ABCDE12

如圖,已知∠C=∠E,∠1=∠2,AB=AD,△ABC和△ADE全等嗎?為什么?解:△ABC和△ADE全等。∵∠1=∠2(已知)∴∠1+∠DAC=∠2+∠DAC即∠BAC=∠DAE

在△ABC和△ADC

中∴△ABC≌△ADE(AAS)BCDEA如圖:已知AB=AC,∠B=∠C,△ABD與△ACE全等嗎?為什么?∴△ABD≌△ACE(ASA)AE=AD,∠B=∠C,∠B=∠C∠A=∠AAD=AEAAS若△ABC中,∠A=30°,∠B=70°,AC=5cm,△DEF中∠D=70°∠F=80°,DF=5cm,那么△ABC與△DEF全等嗎?為什么?如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具嗎?如果可以,帶哪塊去合適?你能說明其中理由嗎?兩角和它們的夾邊對應相等的兩個三角形全等。數(shù)學周報(2)已知和中,=,AB=AC.求證:(1)(3)AB=AC(4)BD=CE證明:(2)AE=AD(全等三角形對應邊相等)(已知)(已知)(公共角)(全等三角形對應邊相等)(等式的性質(zhì))(3)如圖,AC、BD交于點,AC=BD,AB=CD.求證:ABCD練一練:O再創(chuàng)輝煌:1、如圖∠ACB=∠DFE,BC=EF,根據(jù)ASA或AAS,那么應補充一個直接條件

--------------------------,(寫出一個即可),才能使△ABC≌△DEF2、如圖,BE=CD,∠1=∠2,則AB=AC嗎?為什么?ABCDEF∠B=∠E或∠A=∠DCAB12ED如圖,AB∥CD,AD∥BC,那么AB=CD嗎?為什么?AD與BC呢?ABCD1234證明:∵AB∥CD,AD∥BC(已知)

∴∠1=∠2∠3=∠4(兩直線平行,內(nèi)錯角相等)

∴在△ABC與△CDA中

∠1=∠2(已證)

AC=AC(公共邊)

∠3=∠4(已證)

∴△ABC≌△CDA(ASA)

∴AB=CDBC=AD(全等三角形對應邊相等)五、思考題小結(1)兩角和它們的夾邊對應相等的兩個三角形全等.

簡寫成“角邊角”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論