數(shù)學:23《變量間的相關關系》課件(新人教A必修3)_第1頁
數(shù)學:23《變量間的相關關系》課件(新人教A必修3)_第2頁
數(shù)學:23《變量間的相關關系》課件(新人教A必修3)_第3頁
數(shù)學:23《變量間的相關關系》課件(新人教A必修3)_第4頁
數(shù)學:23《變量間的相關關系》課件(新人教A必修3)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

新課標人教版課件系列《高中數(shù)學》必修3新課標人教版課件系列《高中數(shù)學》2.3

《變量間的相關關系》2.3

《變量間的相關關系》教學目標

1.通過收集現(xiàn)實問題中兩個有關聯(lián)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認識變量間的相關關系;2.知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。教學重點:作出散點圖和根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。教學難點:對最小二乘法的理解。教學目標1.通過收集現(xiàn)實問題中兩個有關聯(lián)變量的數(shù)據(jù)作出散1、變量之間除了函數(shù)關系外,還有相關關系。例:(1)商品銷售收入與廣告支出經(jīng)費之間的關系(2)糧食產(chǎn)量與施肥量之間的關系(3)人體內(nèi)脂肪含量與年齡之間的關系一、變量之間的相關關系不同點:函數(shù)關系是一種確定的關系;而相關關系是一種非確定關系.相關關系與函數(shù)關系的異同點:相同點:均是指兩個變量的關系.1、變量之間除了函數(shù)關系外,還有相關關系。一、變量之間的相關2、兩個變量之間產(chǎn)生相關關系的原因是受許多不確定的隨機因素的影響。3、需要通過樣本來判斷變量之間是否存在相關關系一、變量之間的相關關系2、兩個變量之間產(chǎn)生相關關系的原因是受許多不確3、需要通過樣二、兩個變量的線性相關探究一

根據(jù)上述數(shù)據(jù),人體的脂肪含量和年齡之間有怎樣的關系?二、兩個變量的線性相關探究一根據(jù)上述數(shù)據(jù),人體二、兩個變量的線性相關1、散點圖探究一的散點圖2、正相關3、負相關

兩個變量成負相關時,散點圖有什么特點?請舉一些生活中的變量成負相關的例子?!懊麕煶龈咄健笨梢岳斫鉃榻處煹乃皆礁?,學生的水平也越高。那么,教師的水平與學生的水平成什么相關關系?你能舉出更多的描述生活中兩個變量的相關關系的成語嗎?

表示具有相關關系的兩個變量的一組數(shù)據(jù)的圖形,叫做散點圖.二、兩個變量的線性相關1、散點圖探究一的散點圖2、正相關3、二、兩個變量的線性相關二、兩個變量的線性相關1、散點圖2、正相關3、負相關根據(jù)下表,作出散點圖(一)復習回顧1、散點圖2、正相關3、負相關根據(jù)下表,作出散點圖(一)復習(二)回歸直線2、回歸直線

如果散點圖中點的分布從總體上看大致在一條直線附近,我們就稱這兩個變量之間具有線性相關關系。1、變量間的線性相關上述直線稱為回歸直線。(二)回歸直線2、回歸直線如果散點圖中點(二)回歸直線3、如何求回歸直線的方程探究二幾何畫板探究

實際上,求回歸直線的關鍵是如何用數(shù)學的方法來刻畫”從整體上看,各點到此直線的距離最小”.(二)回歸直線3、如何求回歸直線的方程探究二幾何畫板探究這樣的方法叫做最小二乘法.這樣的方法叫做最小二乘法.問題歸結為:a,b取什么值時Q最小,即總體和最小.下面是計算回歸方程的斜率和截距的一般公式.根據(jù)最小二乘法和上述公式可以求回歸方程.問題歸結為:a,b取什么值時Q最小,即總體和最小.下面是計算練習:根據(jù)下表,求回歸方程.練習:根據(jù)下表,求回歸方程.1、列表2、代入公式計算3、寫出回歸直線方程1、列表2、代入公式計算3、寫出回歸直線方程再見再見新課標人教版課件系列《高中數(shù)學》必修3新課標人教版課件系列《高中數(shù)學》2.3

《變量間的相關關系》2.3

《變量間的相關關系》教學目標

1.通過收集現(xiàn)實問題中兩個有關聯(lián)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認識變量間的相關關系;2.知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。教學重點:作出散點圖和根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。教學難點:對最小二乘法的理解。教學目標1.通過收集現(xiàn)實問題中兩個有關聯(lián)變量的數(shù)據(jù)作出散1、變量之間除了函數(shù)關系外,還有相關關系。例:(1)商品銷售收入與廣告支出經(jīng)費之間的關系(2)糧食產(chǎn)量與施肥量之間的關系(3)人體內(nèi)脂肪含量與年齡之間的關系一、變量之間的相關關系不同點:函數(shù)關系是一種確定的關系;而相關關系是一種非確定關系.相關關系與函數(shù)關系的異同點:相同點:均是指兩個變量的關系.1、變量之間除了函數(shù)關系外,還有相關關系。一、變量之間的相關2、兩個變量之間產(chǎn)生相關關系的原因是受許多不確定的隨機因素的影響。3、需要通過樣本來判斷變量之間是否存在相關關系一、變量之間的相關關系2、兩個變量之間產(chǎn)生相關關系的原因是受許多不確3、需要通過樣二、兩個變量的線性相關探究一

根據(jù)上述數(shù)據(jù),人體的脂肪含量和年齡之間有怎樣的關系?二、兩個變量的線性相關探究一根據(jù)上述數(shù)據(jù),人體二、兩個變量的線性相關1、散點圖探究一的散點圖2、正相關3、負相關

兩個變量成負相關時,散點圖有什么特點?請舉一些生活中的變量成負相關的例子?!懊麕煶龈咄健笨梢岳斫鉃榻處煹乃皆礁?,學生的水平也越高。那么,教師的水平與學生的水平成什么相關關系?你能舉出更多的描述生活中兩個變量的相關關系的成語嗎?

表示具有相關關系的兩個變量的一組數(shù)據(jù)的圖形,叫做散點圖.二、兩個變量的線性相關1、散點圖探究一的散點圖2、正相關3、二、兩個變量的線性相關二、兩個變量的線性相關1、散點圖2、正相關3、負相關根據(jù)下表,作出散點圖(一)復習回顧1、散點圖2、正相關3、負相關根據(jù)下表,作出散點圖(一)復習(二)回歸直線2、回歸直線

如果散點圖中點的分布從總體上看大致在一條直線附近,我們就稱這兩個變量之間具有線性相關關系。1、變量間的線性相關上述直線稱為回歸直線。(二)回歸直線2、回歸直線如果散點圖中點(二)回歸直線3、如何求回歸直線的方程探究二幾何畫板探究

實際上,求回歸直線的關鍵是如何用數(shù)學的方法來刻畫”從整體上看,各點到此直線的距離最小”.(二)回歸直線3、如何求回歸直線的方程探究二幾何畫板探究這樣的方法叫做最小二乘法.這樣的方法叫做最小二乘法.問題歸結為:a,b取什么值時Q最小,即總體和最小.下面是計算回歸方程的斜率和截距的一般公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論