版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
生物表面活性劑生物表面活性劑Introduction
Biosurfactants(amphiphiliccompounds)(synthesizedbymicroorganisms)hydrophobic(nonpolar)hydrophilic(polar)thatconferabilitytoaccumulatebetweenfluidphasessuchasoil/waterorair/water,reducingthesurfaceandinterfacialtensionsandformingemulsions.household、industryandagriculturemono-,oligo-orpolysaccharides(多糖),peptides(縮氨酸)orproteinssaturated,unsaturatedandhydroxylatedfattyacidsorfattyalcoholsIntroductionBiosurfactant生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件PropertiesSurfaceandinterfaceactivitybiodegradability(bioremediation).emulsifying
anddemulsifyingabilityantimicrobialactivityPropertiesSurfaceandinterfacSurfaceandinterfaceactivity
Ingeneral,biosurfactantsaremoreeffectiveandefficientandtheirCMC(criticalmicelleconcentration)isabout10-40timeslowerthanchemicalsurfactants,i.e.,lesssurfactantisnecessarytogetamaximaldecreaseonST.
Agoodsurfactantcanlowersurfacetension(ST)ofwaterfrom72to35mN/mandtheinterfacialtension(IT)water/hexadecane(十六烷)from40to1mN/m.SurfaceandinterfaceactivityThebiosurfactantsaccumulateattheinterfacebetweentwoimmisciblefluidsorbetweenafluidandasolid..(figure1)Byreducingsurface(liquid-air)andinterfacial(liquid-liquid)tensiontheyreducetherepulsiveforcesbetweentwodissimilarphasesandallowthesetwophasestomixandinteractmoreeasilyThebiosurfactantsaccumulateBiosurfactantactivitiesdependontheconcentrationofthesurface-activecompoundsuntilthecriticalmicelleconcentration(CMC)isobtained.AtconcentrationsabovetheCMC,biosurfactantmoleculesassociatetoformmicelles,bilayersandvesicles(Figure2).TheCMCiscommonlyusedtomeasuretheefficiencyofsurfactant.EfficientbiosurfactantshavealowCMC,whichmeansthatlessbiosurfactantisrequiredtodecreasethesurfacetension.Biosurfactantactivitiesdepe
Thebiosurfactanteffectivenessisdeterminedbymeasuringitsabilitytochangesurfaceandinterfacialtensions,stabilizationofemulsionsandbystudyingitshydrophilic-lipophilicbalance(HLB).EmulsifierswithlowHLBarelipophilicandstabilizewater-in-oilemulsification,whereasemulsifierswithhighHLBhavetheoppositeeffectandconferbetterwatersolubility
Lowtoxicity
Forexample:AbiosurfactantfromP.aeruginosa(綠膿假單胞菌)(wascomparedwithasyntheticsurfactant(MarlonA-350)widelyusedinindustryintermsoftoxicityandmutagenicproperties.Bothassaysindicatedthehighertoxicityandmutageniceffectofthechemical-derivedsurfactantwhereasbiosurfactantwasconsideredslightlytonon-toxicandnon-mutagenic.lowornon-toxicproductsandtherefore,appropriateforpharmaceutical,cosmeticandfooduses.LowtoxicityForexample:AEmulsionformingandemulsionbreaking
Anemulsionisaheterogeneoussystem,consistingofatleastoneimmiscibleliquidintimatelydispersedinanotherintheformofdroplets,whosediameteringeneralexceeds0.1μm.Emulsionshaveaninternalordispersedandanexternalorcontinuousphase,sotherearegenerallytwotypes:oil-in-water(o/w)orwater-in-oil(w/o)emulsions.
Suchsystemspossessaminimalstability,whichmaybeaccentuatedbyadditivessuchassurface-activeagents(surfactants).Thus,stableemulsionscanbeproducedwithalifespanofmonthsandyears.Biosurfactantsmaystabilize(emulsifiers)ordestabilize(de-emulsifiers)theemulsion.High-molecular-massbiosurfactantsareingeneralbetteremulsifiersthanlow-molecular-massbiosurfactants.EmulsionformingandemulsionAntimicrobialactivity
Asignificativereductiononthemycoflora(真菌群)presentinstoredgrainsofcorn,peanutsandcottonseedswasobservedatiturinconcentrationof50-100ppm).Inactivationofenvelopedvirussuchasherpes(皰疹)andretrovirus(逆轉(zhuǎn)錄酶病毒)wasobservedwith80mMofsurfactin(脂肽).
Severalbiosurfactantshaveshownantimicrobialactionagainstbacteria,fungi(真菌),algae(藻類)andviruses.
Thelipopeptideiturin(脂肽伊枯草菌素)fromB.subtilis(枯草芽孢桿菌)showedpotentantifungalactivity.
AntimicrobialactivityAProduction
Biosurfactantsdonotcompeteeconomicallywithsyntheticsurfactants.Toreduceproductioncosts,othercarbonsources,suchasoliveoil(橄欖油),milleffluent(工廠廢水),whey(乳清)fromcheesemaking,andcassavaflourwater(木薯粉水),usedvegetableoils,molasses(糖漿)(by-product).
Biosurfactantshavebeensynthesizedbyvariousresearchersusingdifferentmicroorganismsandcarbonsources.Thecarbonsourcesusedforbiosurfactantproductionarehydrocarbons,
carbohydrates,andvegetableoils.ProductionBiosurfactanProductionmethodsNaturalbiologicalextractmethod、Microorganismfermentationmethod、EnzymecatalyticmethodPurificationmethodsPrecipitationmethod、Extractionmethod、Superfilteringmethod、Foamseparationmethod、Adsorptionmethod、Columnchromatographymethod、Thinlayerchromatographymethod、Highperformanceliquidchromatographymethod、Liquidsurfaceadsorptionenrichmentmethod、Liquidmembraneseparationmethod.ProductionmethodsFig.2.Structureoffourdifferentrhamnolipidsproducedby
P.aeruginosa.Fig.2.Structureoffourd生物表面活性劑課件FactorsAffectingBiosurfactant
ProductionEffectofCarbonSourceonBiosurfactantsProduction
carbohydratehydrocarbonvegetableoilsFactorsAffectingBiosurfactanEffectofSupportMaterialandRelationshipwithWater
Supportmaterialforimmobilizedenzymeaffectsthe
watercontentintheproximityoftheenzymeandthe
partitioningofreactantsand/orproductsinthereaction
mixture.Sincethermalstabilityiscloselyrelatedtothe
amountofwaterinclosevicinityoftheenzymesmolecule.Theidealcarriershouldnotretainwaterthan
necessarytoreducetheriskofenzymedenaturation(變性).
Immobilizationonhydrophilicsupportsoftenleads
toalossoflipase(脂肪酶)activityastheenzymeundergoesa
conformational(構(gòu)象)changetoaformofreducedactivity.
Thesesupportmaterialsmayalsoreducehydrophobic
substratesolubilityinhydrophilicregions,thereby
reducingthe
accessibilityofsubstratetotheactivesites.EffectofSupportMaterialandEffectofEnvironmentalFactorsonBiosurfactantsProduction
pHtemperatureagitation(攪拌)speedoxygenavailabilityRhamnolipidproductioninpseudomonassp(假單胞菌)wasitsmaximumatapHrangefrom
6to
6.5and
decreasedsharplyabovepH7.
Inaddition,surfacetensionandCMCsofabiosurfactantproduct
remainedstableoverawiderangeofpHvalues,whereasemulsificationhadanarrowerpHrange.EffectofEnvironmentalFactor
AthermophilicBacillussp(芽孢桿菌)grewandproducedbiosurfactantattemperatureabove40℃.Heattreatmentofsomebiosurfactantscausednoappreciablechangeinbiosurfactantproperties,suchastheloweringofthesurfacetensionandinterfacialtensionandtheemulsificationefficiency,allofthatremainedstableafterautoclaving(高壓滅菌)at120℃for15min.
AnincreaseinagitationspeedresultinthereductionofbiosurfactantyieldduetotheeffectofshearinNocardia(土壤絲菌屬).Onotherhand,inyeast,biosurfactantproductionincreaseswhentheagitationandaerationratesareincreased.
Saltconcentrationalsoaffectedbiosurfactantproductiondependingonitseffectsoncellularactivity.Some
biosurfactantproducts,however,werenotaffectedby
saltconcentrationsupto10%(wt/vol),althoughslight
reductionintheCMCsweredetected.AthermophilicBacillusspamodifieddrop-collapsetechniqueforsurfactantquantitationandscreeningofbiosurfactantproducingmicroorganismsQualitativedrop-collapsetestAdropofwaterappliedtoahydrophobicsurfaceintheabsenceofsurfactantswillformabead,asshowninFig.1(A).Thebeadforms
becausethepolarwatermoleculesarerepelledfromthehydrophobicsurface.Incontrast,ifthewaterdropletcontainssurfactant,theforceorinterfacialtensionbetweenthewaterdropandthehydrophobicsurfaceisreduced,whichresultsinthespreadingofthewaterdropoverthehydrophobicsurface(Fig.1,B).Theamountofsurfactantrequiredtocausedrop-collapseisdependentontheabilityofthesurfactanttoreducesurfaceandinterfacialtension.Themorepotentthesurfactant,thesmallerthequantitythatcanbedetected.
(A)Watercontrol(nosurfactant),(B)1000mg/Lrhamnolipid.amodifieddrop-collapsetechsurfactantquantitationbythedrop-collapseQuantitativedrop-collapsemethod:(A)Watercontrol,(B)25mg/Lrhamnolipid,(C)50mg/Lrhamnolipid,(D)75mg/Lrhamnolipidand(E)100mg/Lrhamnolipid.Inthiscase,asthesurfactantconcentrationincreased,thediameterofthesampledropincreased.surfactantquantitationbytheQuantitativeresultsfortwosurfactants,rhamnolipidandSDS,arepresentedasstandardcurvesinFig.2.Alinearcorrelationwasfoundbetweentherhamnolipidconcentrationandthedropdiameter,intherangeof0to100mg/L,withanr2=of0.997(Fig.2A).ForSDS(Fig.2B),concentrationsbetween0and2400mg/Lwerelinearlycorrelatedwithdropdiameter(r2=50.989).Fig.2.Thequantitativedrop-collapsemethod.Thefigureshowstheresultsobtainedwithtwodifferentsurfactants:(A)P.aeruginosaIGB83withaCMCof27mg/Land(B)SDSwithaCMCof1845mg/L.Eachpointrepresentsthemeanandstandarddeviationoffivereplicatesfromexperimentsthatwerecarriedoutintriplicate.Quantitativeresultsfortwo
PotentialCommercial
Applications
Mostsurfactantsarechemicallysynthesized.Nevertheless,inrecentyears,muchattentionhasbeendirectedtowardbiosurfactantsduetotheirbroad-rangefunctionalpropertiesandthediversesyntheticcapabilitiesofmicrobes.Mostimportantistheirenvironmentalacceptability,becausetheyarereadilybiodegradableandhavelowertoxicitythansyntheticsurfactants.Anumberofapplicationsof
biosurfactantshavebeenenvisaged.MEOR、FoodIndustry、CosmeticIndustry、MedicinalUse、Soil
BioremediationPotentialCommercialApplicatBiosurfactantsinMicrobialEnhancedOilRecovery(MEOR)
Fig.Mechanismofenhancedoilrecoverybybiosurfactants.theoilistrappedintheporesbycapillary
pressure.
Biosurfactantsreduceinterfacialtensionbetweenoil/waterandoil/rock.Thisreducesthecapillaryforcespreventingoilfrommovingthroughrockpores.Biosurfactantscanalsobindtightlytotheoil-waterinterfaceandformemulsion.Thisstabilizesthedesorbedoilinwaterandallowsremovalofoilalongwiththeinjectionwater.
BiosurfactantsinMicrobialETheApplicationofBiosurfactantsforSoil
BioremediationThebiologicalremediationprocesscanbeperformed(i)insitu(ii)inapreparedbed(
iii)inaslurryreactorsystemInsituprocessesareusuallyaccomplishedbyadditionofmicrobialnutrientstothesoil,whichallowsconsiderablegrowthofsoilmicrobialindigenouspopulation.Thusincreasedmicrobialbiomassinthesoil.(fig1)TheApplicationofBiosurfacta生物表面活性劑課件Figure3Mechanismofbiosurfactantactivityinmetal-contaminatedsoilduetotheloweringoftheinterfacialtension.Figure3MechanismofbiosurfConclusion
Advantage:
higherbiodegradability,betterenvironmentalcompatibility,higherfoaming,highselectivityandhighspecificactivityatextremetemperature,pHandsalinity.
Therethedemandofbiosurfactantsisincreasingworldwideinrecentyears.However,biosurfactantsdonoteconomicallycompetewithchemicallysynthesizedsurfactants.That’swhythereisagreatscopeforfurtherresearchtofindamoreeconomicalproductionprocessandtechnology.ConclusionAdvantage:higherThankYouThankYou
結(jié)束語謝謝大家聆聽!??!35
結(jié)束語謝謝大家聆聽!?。?5生物表面活性劑生物表面活性劑Introduction
Biosurfactants(amphiphiliccompounds)(synthesizedbymicroorganisms)hydrophobic(nonpolar)hydrophilic(polar)thatconferabilitytoaccumulatebetweenfluidphasessuchasoil/waterorair/water,reducingthesurfaceandinterfacialtensionsandformingemulsions.household、industryandagriculturemono-,oligo-orpolysaccharides(多糖),peptides(縮氨酸)orproteinssaturated,unsaturatedandhydroxylatedfattyacidsorfattyalcoholsIntroductionBiosurfactant生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件生物表面活性劑課件PropertiesSurfaceandinterfaceactivitybiodegradability(bioremediation).emulsifying
anddemulsifyingabilityantimicrobialactivityPropertiesSurfaceandinterfacSurfaceandinterfaceactivity
Ingeneral,biosurfactantsaremoreeffectiveandefficientandtheirCMC(criticalmicelleconcentration)isabout10-40timeslowerthanchemicalsurfactants,i.e.,lesssurfactantisnecessarytogetamaximaldecreaseonST.
Agoodsurfactantcanlowersurfacetension(ST)ofwaterfrom72to35mN/mandtheinterfacialtension(IT)water/hexadecane(十六烷)from40to1mN/m.SurfaceandinterfaceactivityThebiosurfactantsaccumulateattheinterfacebetweentwoimmisciblefluidsorbetweenafluidandasolid..(figure1)Byreducingsurface(liquid-air)andinterfacial(liquid-liquid)tensiontheyreducetherepulsiveforcesbetweentwodissimilarphasesandallowthesetwophasestomixandinteractmoreeasilyThebiosurfactantsaccumulateBiosurfactantactivitiesdependontheconcentrationofthesurface-activecompoundsuntilthecriticalmicelleconcentration(CMC)isobtained.AtconcentrationsabovetheCMC,biosurfactantmoleculesassociatetoformmicelles,bilayersandvesicles(Figure2).TheCMCiscommonlyusedtomeasuretheefficiencyofsurfactant.EfficientbiosurfactantshavealowCMC,whichmeansthatlessbiosurfactantisrequiredtodecreasethesurfacetension.Biosurfactantactivitiesdepe
Thebiosurfactanteffectivenessisdeterminedbymeasuringitsabilitytochangesurfaceandinterfacialtensions,stabilizationofemulsionsandbystudyingitshydrophilic-lipophilicbalance(HLB).EmulsifierswithlowHLBarelipophilicandstabilizewater-in-oilemulsification,whereasemulsifierswithhighHLBhavetheoppositeeffectandconferbetterwatersolubility
Lowtoxicity
Forexample:AbiosurfactantfromP.aeruginosa(綠膿假單胞菌)(wascomparedwithasyntheticsurfactant(MarlonA-350)widelyusedinindustryintermsoftoxicityandmutagenicproperties.Bothassaysindicatedthehighertoxicityandmutageniceffectofthechemical-derivedsurfactantwhereasbiosurfactantwasconsideredslightlytonon-toxicandnon-mutagenic.lowornon-toxicproductsandtherefore,appropriateforpharmaceutical,cosmeticandfooduses.LowtoxicityForexample:AEmulsionformingandemulsionbreaking
Anemulsionisaheterogeneoussystem,consistingofatleastoneimmiscibleliquidintimatelydispersedinanotherintheformofdroplets,whosediameteringeneralexceeds0.1μm.Emulsionshaveaninternalordispersedandanexternalorcontinuousphase,sotherearegenerallytwotypes:oil-in-water(o/w)orwater-in-oil(w/o)emulsions.
Suchsystemspossessaminimalstability,whichmaybeaccentuatedbyadditivessuchassurface-activeagents(surfactants).Thus,stableemulsionscanbeproducedwithalifespanofmonthsandyears.Biosurfactantsmaystabilize(emulsifiers)ordestabilize(de-emulsifiers)theemulsion.High-molecular-massbiosurfactantsareingeneralbetteremulsifiersthanlow-molecular-massbiosurfactants.EmulsionformingandemulsionAntimicrobialactivity
Asignificativereductiononthemycoflora(真菌群)presentinstoredgrainsofcorn,peanutsandcottonseedswasobservedatiturinconcentrationof50-100ppm).Inactivationofenvelopedvirussuchasherpes(皰疹)andretrovirus(逆轉(zhuǎn)錄酶病毒)wasobservedwith80mMofsurfactin(脂肽).
Severalbiosurfactantshaveshownantimicrobialactionagainstbacteria,fungi(真菌),algae(藻類)andviruses.
Thelipopeptideiturin(脂肽伊枯草菌素)fromB.subtilis(枯草芽孢桿菌)showedpotentantifungalactivity.
AntimicrobialactivityAProduction
Biosurfactantsdonotcompeteeconomicallywithsyntheticsurfactants.Toreduceproductioncosts,othercarbonsources,suchasoliveoil(橄欖油),milleffluent(工廠廢水),whey(乳清)fromcheesemaking,andcassavaflourwater(木薯粉水),usedvegetableoils,molasses(糖漿)(by-product).
Biosurfactantshavebeensynthesizedbyvariousresearchersusingdifferentmicroorganismsandcarbonsources.Thecarbonsourcesusedforbiosurfactantproductionarehydrocarbons,
carbohydrates,andvegetableoils.ProductionBiosurfactanProductionmethodsNaturalbiologicalextractmethod、Microorganismfermentationmethod、EnzymecatalyticmethodPurificationmethodsPrecipitationmethod、Extractionmethod、Superfilteringmethod、Foamseparationmethod、Adsorptionmethod、Columnchromatographymethod、Thinlayerchromatographymethod、Highperformanceliquidchromatographymethod、Liquidsurfaceadsorptionenrichmentmethod、Liquidmembraneseparationmethod.ProductionmethodsFig.2.Structureoffourdifferentrhamnolipidsproducedby
P.aeruginosa.Fig.2.Structureoffourd生物表面活性劑課件FactorsAffectingBiosurfactant
ProductionEffectofCarbonSourceonBiosurfactantsProduction
carbohydratehydrocarbonvegetableoilsFactorsAffectingBiosurfactanEffectofSupportMaterialandRelationshipwithWater
Supportmaterialforimmobilizedenzymeaffectsthe
watercontentintheproximityoftheenzymeandthe
partitioningofreactantsand/orproductsinthereaction
mixture.Sincethermalstabilityiscloselyrelatedtothe
amountofwaterinclosevicinityoftheenzymesmolecule.Theidealcarriershouldnotretainwaterthan
necessarytoreducetheriskofenzymedenaturation(變性).
Immobilizationonhydrophilicsupportsoftenleads
toalossoflipase(脂肪酶)activityastheenzymeundergoesa
conformational(構(gòu)象)changetoaformofreducedactivity.
Thesesupportmaterialsmayalsoreducehydrophobic
substratesolubilityinhydrophilicregions,thereby
reducingthe
accessibilityofsubstratetotheactivesites.EffectofSupportMaterialandEffectofEnvironmentalFactorsonBiosurfactantsProduction
pHtemperatureagitation(攪拌)speedoxygenavailabilityRhamnolipidproductioninpseudomonassp(假單胞菌)wasitsmaximumatapHrangefrom
6to
6.5and
decreasedsharplyabovepH7.
Inaddition,surfacetensionandCMCsofabiosurfactantproduct
remainedstableoverawiderangeofpHvalues,whereasemulsificationhadanarrowerpHrange.EffectofEnvironmentalFactor
AthermophilicBacillussp(芽孢桿菌)grewandproducedbiosurfactantattemperatureabove40℃.Heattreatmentofsomebiosurfactantscausednoappreciablechangeinbiosurfactantproperties,suchastheloweringofthesurfacetensionandinterfacialtensionandtheemulsificationefficiency,allofthatremainedstableafterautoclaving(高壓滅菌)at120℃for15min.
AnincreaseinagitationspeedresultinthereductionofbiosurfactantyieldduetotheeffectofshearinNocardia(土壤絲菌屬).Onotherhand,inyeast,biosurfactantproductionincreaseswhentheagitationandaerationratesareincreased.
Saltconcentrationalsoaffectedbiosurfactantproductiondependingonitseffectsoncellularactivity.Some
biosurfactantproducts,however,werenotaffectedby
saltconcentrationsupto10%(wt/vol),althoughslight
reductionintheCMCsweredetected.AthermophilicBacillusspamodifieddrop-collapsetechniqueforsurfactantquantitationandscreeningofbiosurfactantproducingmicroorganismsQualitativedrop-collapsetestAdropofwaterappliedtoahydrophobicsurfaceintheabsenceofsurfactantswillformabead,asshowninFig.1(A).Thebeadforms
becausethepolarwatermoleculesarerepelledfromthehydrophobicsurface.Incontrast,ifthewaterdropletcontainssurfactant,theforceorinterfacialtensionbetweenthewaterdropandthehydrophobicsurfaceisreduced,whichresultsinthespreadingofthewaterdropoverthehydrophobicsurface(Fig.1,B).Theamountofsurfactantrequiredtocausedrop-collapseisdependentontheabilityofthesurfactanttoreducesurfaceandinterfacialtension.Themorepotentthesurfactant,thesmallerthequantitythatcanbedetected.
(A)Watercontrol(nosurfactant),(B)1000mg/Lrhamnolipid.amodifieddrop-collapsetechsurfactantquantitationbythedrop-collapseQuantitativedrop-collapsemethod:(A)Watercontrol,(B)25mg/Lrhamnolipid,(C)50mg/Lrhamnolipid,(D)75mg/Lrhamnolipidand(E)100mg/Lrhamnolipid.Inthiscase,asthesurfactantconcentrationincreased,thediameterofthesampledropincreased.surfactantquantitationbytheQuantitativeresultsfortwosurfactants,rhamnolipidandSDS,arepresentedasstandardcurvesinFig.2.Alinearcorrelationwasfoundbetweentherhamnolipidconcentrationandthedropdiameter,intherangeof0to100mg/L,withanr2=of0.997(Fig.2A).ForSDS(Fig.2B),concentrationsbetween0and2400mg/Lwerelinearlycorrelatedwithdropdiameter(r2=50.989).Fig.2.Thequantitativedrop-collapsemethod.Thefigureshowstheresultsobtainedwithtwodifferentsurfactants:(A)P.aeruginosaIGB83withaCMCof27mg/Land(B)SDSwithaCMCof1845mg/L.Eachpointrepresentsthemea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級(jí)數(shù)學(xué)上冊蘇教版《釘子板上的多邊形》聽評(píng)課記錄
- 八年級(jí)數(shù)學(xué)上冊 14.3 因式分解 14.3.1 提公因式法聽評(píng)課記錄 新人教版
- 湘教版數(shù)學(xué)七年級(jí)上冊2.4《整式》聽評(píng)課記錄
- 青島版數(shù)學(xué)七年級(jí)下冊12.1《平方差公式》聽評(píng)課記錄
- 魯教版地理六年級(jí)下冊7.4《俄羅斯》聽課評(píng)課記錄1
- 人民版九年級(jí)政治全冊第三單元第八課依法治國第3-4喜中有憂我們共同的責(zé)任聽課評(píng)課記錄
- 中圖版地理八年級(jí)下冊7.4《巴西》聽課評(píng)課記錄
- 鋁合金窗產(chǎn)品質(zhì)量監(jiān)督抽查實(shí)施細(xì)則
- 小學(xué)二年級(jí)數(shù)學(xué)口算練習(xí)題
- 一年級(jí)英語聽評(píng)課記錄
- 一年級(jí)下冊勞動(dòng)《變色魚》課件
- 商務(wù)星球版地理八年級(jí)下冊全冊教案
- 天津市河西區(qū)2024-2025學(xué)年四年級(jí)(上)期末語文試卷(含答案)
- 2025年空白離婚協(xié)議書
- 校長在行政會(huì)上總結(jié)講話結(jié)合新課標(biāo)精神給學(xué)校管理提出3點(diǎn)建議
- 北京市北京四中2025屆高三第四次模擬考試英語試卷含解析
- 2024年快遞行業(yè)無人機(jī)物流運(yùn)輸合同范本及法規(guī)遵循3篇
- T-CSUS 69-2024 智慧水務(wù)技術(shù)標(biāo)準(zhǔn)
- 2025年護(hù)理質(zhì)量與安全管理工作計(jì)劃
- 地下商業(yè)街的規(guī)劃設(shè)計(jì)
- 2024-2030年全球及中國低密度聚乙烯(LDPE)行業(yè)需求動(dòng)態(tài)及未來發(fā)展趨勢預(yù)測報(bào)告
評(píng)論
0/150
提交評(píng)論