湖北省巴東一中2022年高考仿真卷數(shù)學(xué)試卷含解析_第1頁
湖北省巴東一中2022年高考仿真卷數(shù)學(xué)試卷含解析_第2頁
湖北省巴東一中2022年高考仿真卷數(shù)學(xué)試卷含解析_第3頁
湖北省巴東一中2022年高考仿真卷數(shù)學(xué)試卷含解析_第4頁
湖北省巴東一中2022年高考仿真卷數(shù)學(xué)試卷含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余15頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線與雙曲線沒有公共點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.2.如圖,正三棱柱各條棱的長度均相等,為的中點(diǎn),分別是線段和線段的動點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動時,下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形3.某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達(dá)線人數(shù)減少C.與2016年相比,2019年二本達(dá)線人數(shù)增加了0.3倍D.2016年與2019年藝體達(dá)線人數(shù)相同4.已知,則的大小關(guān)系是()A. B. C. D.5.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.6.在中,角所對的邊分別為,已知,.當(dāng)變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.7.已知,,是平面內(nèi)三個單位向量,若,則的最小值()A. B. C. D.58.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點(diǎn)對稱C.周期為 D.在上是增函數(shù)9.已知,,,若,則()A. B. C. D.10.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米11.已知拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線交于,兩點(diǎn)(設(shè)點(diǎn)位于第一象限),過點(diǎn),分別作拋物線的準(zhǔn)線的垂線,垂足分別為點(diǎn),,拋物線的準(zhǔn)線交軸于點(diǎn),若,則直線的斜率為A.1 B. C. D.12.若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.若奇函數(shù)滿足,為R上的單調(diào)函數(shù),對任意實(shí)數(shù)都有,當(dāng)時,,則________.14.直線是曲線的一條切線為自然對數(shù)的底數(shù)),則實(shí)數(shù)__________.15.若一組樣本數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為______.16.如圖,直三棱柱中,,,,P是的中點(diǎn),則三棱錐的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.18.(12分)橢圓:()的離心率為,它的四個頂點(diǎn)構(gòu)成的四邊形面積為.(1)求橢圓的方程;(2)設(shè)是直線上任意一點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,求證:直線恒過一個定點(diǎn).19.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.20.(12分)已知圓,定點(diǎn),為平面內(nèi)一動點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動點(diǎn)的軌跡為曲線(1)求曲線的方程(2)過點(diǎn)的直線與交于兩點(diǎn),已知點(diǎn),直線分別與直線交于兩點(diǎn),線段的中點(diǎn)是否在定直線上,若存在,求出該直線方程;若不是,說明理由.21.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若恒成立,求的取值范圍.22.(10分)甲、乙兩班各派三名同學(xué)參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設(shè)甲班三名同學(xué)答對的概率都是,乙班三名同學(xué)答對的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

先求得的漸近線方程,根據(jù)沒有公共點(diǎn),判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點(diǎn),所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.2.D【解析】

A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點(diǎn)睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.3.A【解析】

設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡單的計(jì)算逐一驗(yàn)證選項(xiàng)A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達(dá)線人數(shù),2016年二本達(dá)線人數(shù),增加了倍,故C錯誤;2016年藝體達(dá)線人數(shù),2019年藝體達(dá)線人數(shù),故D錯誤.故選:A.【點(diǎn)睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識圖的能力,是一道較為簡單的統(tǒng)計(jì)類的題目.4.B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.5.D【解析】

利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項(xiàng).【詳解】因?yàn)?,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項(xiàng)正確.C選項(xiàng)是遞減區(qū)間,A,B選項(xiàng)中有部分增區(qū)間部分減區(qū)間.故選:D【點(diǎn)睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.6.C【解析】

因?yàn)椋?,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.7.A【解析】

由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號可取到.故選:A【點(diǎn)睛】此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.8.D【解析】

當(dāng)時,,∴f(x)不關(guān)于直線對稱;當(dāng)時,,∴f(x)關(guān)于點(diǎn)對稱;f(x)得周期,當(dāng)時,,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).9.B【解析】

由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運(yùn)算計(jì)算.【詳解】由,得,則,,,所以.故選:B.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運(yùn)算,掌握向量數(shù)量積的坐標(biāo)運(yùn)算是解題關(guān)鍵.10.B【解析】

根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.11.C【解析】

根據(jù)拋物線定義,可得,,又,所以,所以,設(shè),則,則,所以,所以直線的斜率.故選C.12.D【解析】

根據(jù)復(fù)數(shù)的運(yùn)算,化簡得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復(fù)數(shù)的運(yùn)算,可得,所對應(yīng)的點(diǎn)為位于第四象限.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,準(zhǔn)確化簡復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)可得,函數(shù)是以為周期的函數(shù),令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數(shù)是以為周期的函數(shù),,又函數(shù)為奇函數(shù),所以.故答案為:【點(diǎn)睛】本題主要考查了換元法求函數(shù)解析式、函數(shù)的奇偶性、周期性的應(yīng)用,屬于中檔題.14.【解析】

根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點(diǎn)的坐標(biāo),進(jìn)而求得切線方程,通過對比系數(shù)求得的值.【詳解】,則,所以切點(diǎn)為,故切線為,即,故.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問題,屬于基礎(chǔ)題.15.1【解析】

根據(jù)題意,由平均數(shù)公式可得,解得的值,進(jìn)而由方差公式計(jì)算,可得答案.【詳解】根據(jù)題意,數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1.【點(diǎn)睛】本題考平均數(shù)、方差的計(jì)算,考查運(yùn)算求解能力,求解時注意求出的值,屬于基礎(chǔ)題.16.【解析】

證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點(diǎn),.

故答案為:【點(diǎn)睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時取最大值.故的最大值為.【點(diǎn)睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題18.(1);(2)證明見解析.【解析】

(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2)設(shè)點(diǎn),,,由,,結(jié)合斜率公式化簡得出,,即,滿足,由的任意性,得出直線恒過一個定點(diǎn).【詳解】(1)依題意得,解得即橢圓:;(2)設(shè)點(diǎn),,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,,,即直線恒過一個定點(diǎn).【點(diǎn)睛】本題主要考查了求橢圓的方程,直線過定點(diǎn)問題,屬于中檔題.19.(1)1(2)【解析】

(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因?yàn)?,所以在單調(diào)遞增,又,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時等號成立.故方程①有且僅有唯一解,實(shí)數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當(dāng)時,.又由上式得,當(dāng)時,,,.因此不等式(*)均成立.令(),則,(i)若時,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當(dāng)時,此時,,,則需由(*)知,,(當(dāng)且僅當(dāng)時等號成立),所以.②當(dāng)時,此時,,則當(dāng)時,(由(*)知);當(dāng)時,(由(*)知).故對于任意,.綜上述:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對于恒成立問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.20.(1);(2)存在,.【解析】

(1)設(shè)以為直徑的圓心為,切點(diǎn)為,取關(guān)于軸的對稱點(diǎn),連接,計(jì)算得到,故軌跡為橢圓,計(jì)算得到答案.(2)設(shè)直線的方程為,設(shè),聯(lián)立方程得到,,計(jì)算,得到答案.【詳解】(1)設(shè)以為直徑的圓心為,切點(diǎn)為,則,取關(guān)于軸的對稱點(diǎn),連接,故,所以點(diǎn)的軌跡是以為焦點(diǎn),長軸為4的橢圓,其中,曲線方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論