版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
初三上學(xué)期數(shù)學(xué)知識點匯總第一章特殊平行四邊形菱形的性質(zhì)與判定菱形的定義:一組鄰邊相等的平行四邊形叫做菱形。※菱形的性質(zhì):具有平行四邊形的性質(zhì),且四條邊都相等,兩條對角線互相垂直平分,每一條對角線平分一組對角。菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸?!庑蔚呐袆e方法:一組鄰邊相等的平行四邊形是菱形。對角線互相垂直的平行四邊形是菱形。四條邊都相等的四邊形是菱形。矩形的性質(zhì)與判定※矩形的定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形?!匦蔚男再|(zhì):具有平行四邊形的性質(zhì),且對角線相等,四個角都是直角?!匦蔚呐卸ǎ河幸粋€內(nèi)角是直角的平行四邊形叫矩形(根據(jù)定義)。對角線相等的平行四邊形是矩形。四個角都相等的四邊形是矩形?!普摚褐苯侨切涡边吷系闹芯€等于斜邊的一半。正方形的性質(zhì)與判定正方形的定義:一組鄰邊相等的矩形叫做正方形?!叫蔚男再|(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì)。※正方形常用的判定:有一個內(nèi)角是直角的菱形是正方形;鄰邊相等的矩形是正方形;對角線相等的菱形是正方形;對角線互相垂直的矩形是正方形。正方形、矩形、菱形和平行邊形四者之間的關(guān)系(如圖3所示):※梯形定義:一組對邊平行且另一組對邊不平行的四邊形叫做梯形?!鶅蓷l腰相等的梯形叫做等腰梯形?!粭l腰和底垂直的梯形叫做直角梯形?!妊菪蔚男再|(zhì):等腰梯形同一底上的兩個內(nèi)角相等,對角線相等。同一底上的兩個內(nèi)角相等的梯形是等腰梯形?!切蔚闹形痪€平行于第三邊,并且等于第三邊的一半?!鶌A在兩條平行線間的平行線段相等。※在直角三角形中,斜邊上的中線等于斜邊的一半第二章一元二次方程認(rèn)識一元二次方程用配方法求解一元二次方程用公式法求解一元二次方程用因式分解法求解一元二次方程一元二次方程的跟與系數(shù)的關(guān)系應(yīng)用一元二次方程※只含有一個未知數(shù)的整式方程,且都可以化為的形式,這樣的方程叫一元二次方程。※把稱為一元二次方程的一般形式,a為二次項系數(shù);b為一次項系數(shù);c為常數(shù)項?!庖辉畏匠痰姆椒ǎ孩倥浞椒ü椒ǚ纸庖蚴椒ò逊匠痰囊贿呑兂?,另一邊變成兩個一次因式的乘積來求解?!浞椒ń庖辉畏匠痰幕静襟E:①把方程化成一元二次方程的一般形式;將二次項系數(shù)化成1;把常數(shù)項移到方程的右邊;兩邊加上一次項系數(shù)的一半的平方;把方程轉(zhuǎn)化成的形式;兩邊開方求其根。※根與系數(shù)的關(guān)系:當(dāng)b2-4ac>0時,方程有兩個不等的實數(shù)根;當(dāng)b2-4ac=0時,方程有兩個相等的實數(shù)根;當(dāng)b2-4ac※如果一元二次方程的兩根分別為xl、x2,則有::※一元二次方程的根與系數(shù)的關(guān)系的作用:已知方程的一根,求另一根;不解方程,求二次方程的根xl、x2的對稱式的值,特別注意以下公式:①②③④⑤⑥⑦其他能用或表達的代數(shù)式。已知方程的兩根xl、x2,可以構(gòu)造一元二次方程:已知兩數(shù)xl、x2的和與積,求此兩數(shù)的問題,可以轉(zhuǎn)化為求一元二次方程的根※在利用方程來解應(yīng)用題時,主要分為兩個步驟:①設(shè)未知數(shù);②尋找等量關(guān)系?!幚韱栴}的過程可以進一步概括為:第三章概率的進一步認(rèn)識用樹狀圖或表格求概率用頻率估計概率※在頻率分布表里,落在各小組內(nèi)的數(shù)據(jù)的個數(shù)叫做頻數(shù);每一小組的頻數(shù)與數(shù)據(jù)總數(shù)的比值叫做這一小組的頻率;即在頻率分布直方圖中,由于各個小長方形的面積等于相應(yīng)各組的頻率,而各組頻率的和等于1。因此,,各個小長方形的面積的和等于1?!l率分布表和頻率分布直方圖是一組數(shù)據(jù)的頻率分布的兩種不同表示形式,前者準(zhǔn)確,后者直觀。用一件事件發(fā)生的頻率來估計這一件事件發(fā)生的概率??捎昧斜淼姆椒ㄇ蟪龈怕?,但此方法不太適用較復(fù)雜情況?!僭O(shè)布袋內(nèi)有M個黑球,通過多次試驗,我們可以估計出布袋內(nèi)隨機摸出一球,它為白球的概率;※要估算池塘里有多少條魚,我們可先從池塘里捉上100條魚做記號,再放回池塘,之后再從池塘中捉上200條魚,如果其中有10條魚是有標(biāo)記的,再設(shè)池塘共有x條魚,則可依照估算出魚的條數(shù)?!钪写嬖诖罅康牟淮_定事件,概率是描述不確定現(xiàn)象的數(shù)學(xué)模型,它能準(zhǔn)確地衡量出事件發(fā)生的可能性的大小,并不表示一定會發(fā)生。概率的求法:—般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m個結(jié)果,那么事件A發(fā)生的概率為P=、列表法用列出表格的方法來分析和求解某些事件的概率的方法叫做列表法。樹狀圖法通過列樹狀圖列出某事件的所有可能的結(jié)果,求出其概率的方法叫做樹狀圖法。第四章圖形的相似成正比線段平行線段成比例形似多邊形探索三角形相似的條件相似三角形判定定理的證明利用相似三角形測高相似三角形的性質(zhì)圖形的位似一.線段的比海1.如果選用同一個長度單位量得兩條線段AB,CD的長度分別是m、n,那么就說這兩條線段的比AB:CD=m:n,或?qū)懗?※鳥?四條線段a、b、c、d中,如果a與b的比等于c與d的比,即,那么這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.※彳?注意點:a:b=k,說明a是b的k倍;由于線段a、b的長度都是正數(shù),所以k是正數(shù);比與所選線段的長度單位無關(guān),求出時兩條線段的長度單位要一致;除了a=b之外,a:bHb:a,與互為倒數(shù);比例的基本性質(zhì):若,則ad二be;若ad二be,則二.黃金分割海1?如圖1,點C把線段AB分成兩條線段AC和BC,如果,那么稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.探2?黃金分割點是最優(yōu)美、最令人賞心悅目的點.相似多邊形Q1.一般地,形狀相同的圖形稱為相似圖形.探2.對應(yīng)角相等、對應(yīng)邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應(yīng)邊的比叫做相似比.相似三角形海1?在相似多邊形中,最為簡簡單的就是相似三角形.探2?對應(yīng)角相等、對應(yīng)邊成比例的三角形叫做相似三角形.相似三角形對應(yīng)邊的比叫做相似比.※彳.全等三角形是相似三角的特例,這時相似比等于1.注意:證兩個相似三角形,與證兩個全等三角形一樣,應(yīng)把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上.探4.相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比.探5?相似三角形周長的比等于相似比.探6?相似三角形面積的比等于相似比的平方.探索三角形相似的條件海1?相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.兩角對應(yīng)相等;兩邊對應(yīng)成比例,且夾角相等;三邊對應(yīng)成比例?①一個銳角對應(yīng)相等;②兩條邊對應(yīng)成比例:兩直角邊對應(yīng)成比例;斜邊和一直角邊對應(yīng)成比例.探2?平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例.如圖2,ll//l2//l3,則.※彳?平行于三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商場臨時租賃協(xié)議
- 原料配送代理合同
- 工程機械租憑合同書樣式
- 交通意外保險合同范本
- 2024年承包房屋建筑合同范本
- 出口買方信貸貸款協(xié)議
- 搜索引擎服務(wù)合同示例
- 專利代理委托協(xié)議書
- 2024年運輸書面合同
- 2024保管協(xié)議書范文
- 預(yù)防及控制養(yǎng)老機構(gòu)院內(nèi)感染-院內(nèi)感染基本知識
- 全新定制衣柜質(zhì)保合同
- 醫(yī)院培訓(xùn)課件:《血氣分析的質(zhì)量控制》
- 大學(xué)生紅色旅游調(diào)查報告總結(jié)
- 標(biāo)準(zhǔn)吞咽功能評定量表
- 學(xué)習(xí)科學(xué)與技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年山東師范大學(xué)
- 技能成才強國有我主題班會
- 民用建筑電線電纜防火技術(shù)規(guī)程DBJ-T 15-226-2021
- 心房顫動診斷和治療中國指南(2023) 解讀
- 單孔胸腔鏡手術(shù)肺結(jié)節(jié)
- 2024年返聘退休人員合同
評論
0/150
提交評論