2020年北京初三數(shù)學(xué)第8課:全等三角形和相似三角形的再認(rèn)識(shí)課件_第1頁
2020年北京初三數(shù)學(xué)第8課:全等三角形和相似三角形的再認(rèn)識(shí)課件_第2頁
2020年北京初三數(shù)學(xué)第8課:全等三角形和相似三角形的再認(rèn)識(shí)課件_第3頁
2020年北京初三數(shù)學(xué)第8課:全等三角形和相似三角形的再認(rèn)識(shí)課件_第4頁
2020年北京初三數(shù)學(xué)第8課:全等三角形和相似三角形的再認(rèn)識(shí)課件_第5頁
已閱讀5頁,還剩67頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

全等三角形和相似三角形的再認(rèn)識(shí)2020年海淀區(qū)空中課堂初三年級(jí)數(shù)學(xué)學(xué)科第8課全等三角形和相似三角形的再認(rèn)識(shí)2020年海淀區(qū)空中課堂初三年觀察這兩組三角形,從圖中看到了什么?想到了什么?全等三角形相似三角形觀察這兩組三角形,從圖中看到了什么?想到了什么?全等三角形相

全等三角形相似三角形圖形定義性質(zhì)判定方法形成過程CABC’A’B’C’A’B’CAB能夠完全重合的兩個(gè)三角形全等.對(duì)應(yīng)邊相等;對(duì)應(yīng)角相等;所有的對(duì)應(yīng)線段、對(duì)應(yīng)的量都相等SSS(邊邊邊);SAS(邊角邊);ASA(角邊角);AAS(角角邊);HL(斜邊直角邊)兩個(gè)圖形全等,其中一個(gè)圖形可以看作由另一個(gè)圖形平移、旋轉(zhuǎn)、軸對(duì)稱得到對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似.對(duì)應(yīng)邊成比例,對(duì)應(yīng)角相等;對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線)的比都等于相似比;面積比等于相似比的平方平行于三角形一邊的直線和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似;兩角分別相等的兩個(gè)三角形相似;兩邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似.兩個(gè)圖形相似,其中一個(gè)圖形可以看作由另一個(gè)圖形放大或縮小得到

全等三角形相似三角形圖形定義性質(zhì)判定方法形成過程CABC’從全等到相似——放大/縮小的數(shù)量關(guān)系與位置關(guān)系

特殊一般從全等到相似——放大/縮小的數(shù)量關(guān)系與位置關(guān)系

特殊一般例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),

(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),

(1)過點(diǎn)D例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).解:①過點(diǎn)D作BC的平行線DE,再過點(diǎn)D作AC的平行線DF.例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),解:例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).解:①過點(diǎn)D作BC的平行線DE,再過點(diǎn)D作AC的平行線DF.△ADE≌△DBF.(ASA)例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),解:△ADE≌例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).解:①過點(diǎn)D作BC的平行線DE,再過點(diǎn)D作AC的平行線DF.△ADE≌△DBF.(ASA)②連接DC.例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),解:△ADE≌例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).解:①過點(diǎn)D作BC的平行線DE,再過點(diǎn)D作AC的平行線DF.△ADE≌△DBF.(ASA)②連接DC.△DEC≌△CFD.(ASA)例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),解:△ADE≌例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(2)過點(diǎn)D作一條直線,是否能得到相似三角形?請(qǐng)你寫出作圖方法,并說出判定兩三角形相似的依據(jù).解:①過點(diǎn)D作BC的平行線DE;△ADE∽△ABC.

過點(diǎn)D作AC的平行線DF;△BDF∽△BAC.例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(2)過點(diǎn)D作例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(2)過點(diǎn)D作一條直線,是否能得到相似三角形?請(qǐng)你寫出作圖方法,并說出判定兩三角形相似的依據(jù).解:②作∠AE′D=∠B;△AE’D∽△ABC.△BDF’∽△BAC.作∠BDF′=∠C;例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(2)過點(diǎn)D作歸納:1、以上共有四對(duì)三角形相似,可以歸為兩類:一類為“正A”型;另一類為“斜A”型.“正A”型“斜A”型歸納:“正A”型“斜A”型歸納:2、判定兩個(gè)三角形全等和相似的常規(guī)思路:判定兩個(gè)三角形全等的常規(guī)思路判定兩個(gè)三角形相似的常規(guī)思路1、若有兩組角對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾邊對(duì)應(yīng)相等(ASA)②其中任一組角的對(duì)邊對(duì)應(yīng)相等(AAS)2、若有兩組邊對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾角對(duì)應(yīng)相等(SAS)②第三邊也對(duì)應(yīng)相等(SSS)3、若有一邊、一角對(duì)應(yīng)相等時(shí),

則需設(shè)法再找:4、在Rt△中,若有一組直角邊對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾等角的另一邊也對(duì)應(yīng)相等(SAS)②另一角也對(duì)應(yīng)相等(AAS或ASA)①斜邊對(duì)應(yīng)相等(HL)②另一組直角邊也對(duì)應(yīng)相等(SAS)1、若有平行截線時(shí):則用預(yù)備定理2、若有一組角對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①另一組角也對(duì)應(yīng)相等

②夾等角兩邊對(duì)應(yīng)成比例3、若有兩組邊對(duì)應(yīng)成比例時(shí),則需設(shè)法再找:①夾角對(duì)應(yīng)相等②第三邊也對(duì)應(yīng)成比例4、若有等腰關(guān)系時(shí),則需設(shè)法再找:①頂角對(duì)應(yīng)相等②其中一組底角對(duì)應(yīng)相等③底和腰對(duì)應(yīng)成比例歸納:判定兩個(gè)三角形全等的常規(guī)思路判定兩個(gè)三角形相似的常規(guī)思例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),思考:若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),思考:若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:若△ABC為等腰三角形(非等邊)時(shí),(1)AB=AC(2)AB=BC(3)AC=BC例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),①△ADC與△ABC:圖中有△ADC、△BCD、△ABC共3個(gè)三角形∠A是公共角只需再尋找一組等角例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),①△ADC與△ABC:圖中有△ADC、△BCD、△ABC共3個(gè)三角形∠A是公共角若∠ADC=∠B只需再尋找一組等角例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),①△ADC與△ABC:圖中有△ADC、△BCD、△ABC共3個(gè)三角形∠A是公共角若∠ADC=∠B若∠ADC=∠ACB與外角性質(zhì)矛盾!只需再尋找一組等角例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),①△ADC與△ABC:圖中有△ADC、△BCD、△ABC共3個(gè)三角形∠A是公共角若∠ADC=∠B若∠ADC=∠ACB與外角性質(zhì)矛盾!且∠ACB=∠B只需再尋找一組等角∠ADC=∠B與外角性質(zhì)矛盾!不相似!例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),②△ADC與△BCD:不相似!如果△ADC與△BCD相似:例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),②△ADC與△BCD若∠ADC=∠BDC如果△ADC與△BCD相似:若∠ADC=∠B若∠ADC=∠DCB與已知非等邊矛盾!與外角性質(zhì)矛盾!與外角性質(zhì)矛盾!不相似!例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),③△BCD與△BAC∠B是公共角從角的角度添加:從邊的角度添加:∠BCD=∠A.∠BDC=∠ACB;∠BDC=∠B;“斜A”BC=CD;;;.相似!例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?(1)當(dāng)AB=AC時(shí),①△ADC不可能與△ABC相似;②△ADC不可能與△BCD相似;③△BCD∽△BAC可以相似:(添加∠BDC=∠ACB或

∠BCD=∠A或BC=CD或

或等.)解:例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?(2)當(dāng)AB=BC時(shí),分析:(1)分析:與(1)類似,因?yàn)檫@兩種情況AB都是腰,點(diǎn)D都是腰AB的中點(diǎn)!例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?(2)當(dāng)AB=BC時(shí),①△BCD不可能與△ABC相似;②△ADC不可能與△BCD相似;③△ACD∽△ABC:(添加∠ACD=∠B或∠ADC=∠ACB

或DC=AC或等.)解:與(1)類似例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?(3)當(dāng)AC=BC時(shí),解:此時(shí)△ACD≌△BCD(SSS)所以△ACD∽△BCD.若添加一個(gè)條件∠ACB=90°:∠A=∠B=45°則△ACD∽△BCD∽△ABC.例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB回顧:判定兩個(gè)三角形全等的常規(guī)思路判定兩個(gè)三角形相似的常規(guī)思路1、若有兩組角對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾邊對(duì)應(yīng)相等(ASA)②其中任一角的對(duì)邊對(duì)應(yīng)相等(AAS)2、若有兩組邊對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾角對(duì)應(yīng)相等(SAS)②第三邊也對(duì)應(yīng)相等(SSS)3、若有一邊、一角對(duì)應(yīng)相等時(shí),

則需設(shè)法再找:4、在Rt△中,若有一組直角邊對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾等角的另一邊也對(duì)應(yīng)相等(SAS)②另一個(gè)角也對(duì)應(yīng)相等(AAS或ASA)①斜邊對(duì)應(yīng)相等(HL)②另一組直角邊也對(duì)應(yīng)相等(SAS)1、若有平行截線時(shí):則用預(yù)備定理2、若有一組角對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①另一組角也對(duì)應(yīng)相等

②夾等角兩邊對(duì)應(yīng)成比例3、若有兩組邊對(duì)應(yīng)成比例時(shí),則需設(shè)法再找:①夾角對(duì)應(yīng)相等②第三邊也對(duì)應(yīng)成比例4、若有等腰關(guān)系時(shí),則需設(shè)法再找:①頂角對(duì)應(yīng)相等②其中一組底角對(duì)應(yīng)相等③底和腰對(duì)應(yīng)成比例先挖掘題目已知的邊、角關(guān)系再根據(jù)判定方法找尋條件回顧:判定兩個(gè)三角形全等的常規(guī)思路判定兩個(gè)三角形相似的常規(guī)思從全等到相似從全等到相似從全等到相似從全等到相似從全等到相似從全等到相似從全等到相似從全等到相似從相似到全等從相似到全等全等圖形和相似圖形可以互相轉(zhuǎn)化.全等圖形和相似圖形可以互相轉(zhuǎn)化.作業(yè):已知:在△ABE和△BCF中,若BA=BE,BC=BF,且∠ABE=∠FBC=α,取AF、CE的中點(diǎn)M、N,連接BM、BN、MN,

求證:BM=BN,∠MBN=α作業(yè):已知:在△ABE和△BCF中,若BA=BE,BC=BF2.如圖,在△ABC中,AD⊥BC于點(diǎn)D,BE⊥AC于點(diǎn)E,AD與BE交于點(diǎn)H,連接DE,找出此圖中所有的相似三角形,并證明.

作業(yè):2.如圖,在△ABC中,AD⊥BC于點(diǎn)D,BE⊥AC于點(diǎn)E3.閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)∠APD=90°時(shí),易證△ABP∽△PCD,從而得到BP?PC=AB?CD,解答下列問題.(1)模型探究:如圖2,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),結(jié)論BP?PC=AB?CD仍成立嗎?試說明理由;(2)拓展應(yīng)用:如圖3,M為AB的中點(diǎn),AE與BD交于點(diǎn)C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=

,AF=3,求FG的長(zhǎng).作業(yè):3.閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B全等三角形和相似三角形的再認(rèn)識(shí)2020年海淀區(qū)空中課堂初三年級(jí)數(shù)學(xué)學(xué)科第8課全等三角形和相似三角形的再認(rèn)識(shí)2020年海淀區(qū)空中課堂初三年觀察這兩組三角形,從圖中看到了什么?想到了什么?全等三角形相似三角形觀察這兩組三角形,從圖中看到了什么?想到了什么?全等三角形相

全等三角形相似三角形圖形定義性質(zhì)判定方法形成過程CABC’A’B’C’A’B’CAB能夠完全重合的兩個(gè)三角形全等.對(duì)應(yīng)邊相等;對(duì)應(yīng)角相等;所有的對(duì)應(yīng)線段、對(duì)應(yīng)的量都相等SSS(邊邊邊);SAS(邊角邊);ASA(角邊角);AAS(角角邊);HL(斜邊直角邊)兩個(gè)圖形全等,其中一個(gè)圖形可以看作由另一個(gè)圖形平移、旋轉(zhuǎn)、軸對(duì)稱得到對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似.對(duì)應(yīng)邊成比例,對(duì)應(yīng)角相等;對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線)的比都等于相似比;面積比等于相似比的平方平行于三角形一邊的直線和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似;兩角分別相等的兩個(gè)三角形相似;兩邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似.兩個(gè)圖形相似,其中一個(gè)圖形可以看作由另一個(gè)圖形放大或縮小得到

全等三角形相似三角形圖形定義性質(zhì)判定方法形成過程CABC’從全等到相似——放大/縮小的數(shù)量關(guān)系與位置關(guān)系

特殊一般從全等到相似——放大/縮小的數(shù)量關(guān)系與位置關(guān)系

特殊一般例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),

(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),

(1)過點(diǎn)D例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).解:①過點(diǎn)D作BC的平行線DE,再過點(diǎn)D作AC的平行線DF.例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),解:例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).解:①過點(diǎn)D作BC的平行線DE,再過點(diǎn)D作AC的平行線DF.△ADE≌△DBF.(ASA)例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),解:△ADE≌例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).解:①過點(diǎn)D作BC的平行線DE,再過點(diǎn)D作AC的平行線DF.△ADE≌△DBF.(ASA)②連接DC.例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),解:△ADE≌例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(1)過點(diǎn)D作直線,是否能得到全等三角形?請(qǐng)你寫出作圖方法,

并說出判定兩三角形全等的依據(jù).解:①過點(diǎn)D作BC的平行線DE,再過點(diǎn)D作AC的平行線DF.△ADE≌△DBF.(ASA)②連接DC.△DEC≌△CFD.(ASA)例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),解:△ADE≌例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(2)過點(diǎn)D作一條直線,是否能得到相似三角形?請(qǐng)你寫出作圖方法,并說出判定兩三角形相似的依據(jù).解:①過點(diǎn)D作BC的平行線DE;△ADE∽△ABC.

過點(diǎn)D作AC的平行線DF;△BDF∽△BAC.例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(2)過點(diǎn)D作例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(2)過點(diǎn)D作一條直線,是否能得到相似三角形?請(qǐng)你寫出作圖方法,并說出判定兩三角形相似的依據(jù).解:②作∠AE′D=∠B;△AE’D∽△ABC.△BDF’∽△BAC.作∠BDF′=∠C;例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(2)過點(diǎn)D作歸納:1、以上共有四對(duì)三角形相似,可以歸為兩類:一類為“正A”型;另一類為“斜A”型.“正A”型“斜A”型歸納:“正A”型“斜A”型歸納:2、判定兩個(gè)三角形全等和相似的常規(guī)思路:判定兩個(gè)三角形全等的常規(guī)思路判定兩個(gè)三角形相似的常規(guī)思路1、若有兩組角對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾邊對(duì)應(yīng)相等(ASA)②其中任一組角的對(duì)邊對(duì)應(yīng)相等(AAS)2、若有兩組邊對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾角對(duì)應(yīng)相等(SAS)②第三邊也對(duì)應(yīng)相等(SSS)3、若有一邊、一角對(duì)應(yīng)相等時(shí),

則需設(shè)法再找:4、在Rt△中,若有一組直角邊對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①夾等角的另一邊也對(duì)應(yīng)相等(SAS)②另一角也對(duì)應(yīng)相等(AAS或ASA)①斜邊對(duì)應(yīng)相等(HL)②另一組直角邊也對(duì)應(yīng)相等(SAS)1、若有平行截線時(shí):則用預(yù)備定理2、若有一組角對(duì)應(yīng)相等時(shí),則需設(shè)法再找:①另一組角也對(duì)應(yīng)相等

②夾等角兩邊對(duì)應(yīng)成比例3、若有兩組邊對(duì)應(yīng)成比例時(shí),則需設(shè)法再找:①夾角對(duì)應(yīng)相等②第三邊也對(duì)應(yīng)成比例4、若有等腰關(guān)系時(shí),則需設(shè)法再找:①頂角對(duì)應(yīng)相等②其中一組底角對(duì)應(yīng)相等③底和腰對(duì)應(yīng)成比例歸納:判定兩個(gè)三角形全等的常規(guī)思路判定兩個(gè)三角形相似的常規(guī)思例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),思考:若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),思考:若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:若△ABC為等腰三角形(非等邊)時(shí),(1)AB=AC(2)AB=BC(3)AC=BC例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),①△ADC與△ABC:圖中有△ADC、△BCD、△ABC共3個(gè)三角形∠A是公共角只需再尋找一組等角例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),①△ADC與△ABC:圖中有△ADC、△BCD、△ABC共3個(gè)三角形∠A是公共角若∠ADC=∠B只需再尋找一組等角例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),①△ADC與△ABC:圖中有△ADC、△BCD、△ABC共3個(gè)三角形∠A是公共角若∠ADC=∠B若∠ADC=∠ACB與外角性質(zhì)矛盾!只需再尋找一組等角例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),①△ADC與△ABC:圖中有△ADC、△BCD、△ABC共3個(gè)三角形∠A是公共角若∠ADC=∠B若∠ADC=∠ACB與外角性質(zhì)矛盾!且∠ACB=∠B只需再尋找一組等角∠ADC=∠B與外角性質(zhì)矛盾!不相似!例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),②△ADC與△BCD:不相似!如果△ADC與△BCD相似:例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),②△ADC與△BCD若∠ADC=∠BDC如果△ADC與△BCD相似:若∠ADC=∠B若∠ADC=∠DCB與已知非等邊矛盾!與外角性質(zhì)矛盾!與外角性質(zhì)矛盾!不相似!例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?分析:(1)當(dāng)AB=AC時(shí),③△BCD與△BAC∠B是公共角從角的角度添加:從邊的角度添加:∠BCD=∠A.∠BDC=∠ACB;∠BDC=∠B;“斜A”BC=CD;;;.相似!例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?(1)當(dāng)AB=AC時(shí),①△ADC不可能與△ABC相似;②△ADC不可能與△BCD相似;③△BCD∽△BAC可以相似:(添加∠BDC=∠ACB或

∠BCD=∠A或BC=CD或

或等.)解:例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?(2)當(dāng)AB=BC時(shí),分析:(1)分析:與(1)類似,因?yàn)檫@兩種情況AB都是腰,點(diǎn)D都是腰AB的中點(diǎn)!例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?(2)當(dāng)AB=BC時(shí),①△BCD不可能與△ABC相似;②△ADC不可能與△BCD相似;③△ACD∽△ABC:(添加∠ACD=∠B或∠ADC=∠ACB

或DC=AC或等.)解:與(1)類似例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△AB例:如圖,在銳角△ABC中,D是邊AB的中點(diǎn),(3)若△ABC為等腰三角形(非等邊),連接DC,是否有三角形相似?若沒有,添加一個(gè)什么條件就存在三角形相似?(3)當(dāng)AC=BC時(shí),解:此時(shí)△ACD≌△BCD(SSS)所以△ACD∽△BCD.若

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論