2022年福建省泉州鯉城北片區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末檢測試題含解析_第1頁
2022年福建省泉州鯉城北片區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末檢測試題含解析_第2頁
2022年福建省泉州鯉城北片區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末檢測試題含解析_第3頁
2022年福建省泉州鯉城北片區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末檢測試題含解析_第4頁
2022年福建省泉州鯉城北片區(qū)六校聯(lián)考數(shù)學(xué)九年級上冊期末檢測試題含解析_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,四邊形是扇形的內(nèi)接矩形,頂點(diǎn)P在弧上,且不與M,N重合,當(dāng)P點(diǎn)在弧上移動時,矩形的形狀、大小隨之變化,則的長度()A.變大 B.變小 C.不變 D.不能確定2.下列函數(shù)中,是反比例函數(shù)的是()A. B. C. D.3.若是方程的根,則的值為()A.2022 B.2020 C.2018 D.20164.某校數(shù)學(xué)課外小組,在坐標(biāo)紙上為某濕地公園的一塊空地設(shè)計(jì)植樹方案如下:第k棵樹種植在點(diǎn)Pk(xk,yk)處,其中x1=1,y1=1,且k≥2時,,[a]表示非負(fù)實(shí)數(shù)a的整數(shù)部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵樹種植點(diǎn)的坐標(biāo)應(yīng)為()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)5.如圖,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B的坐標(biāo)為(0,4),⊙D過A、B、O三點(diǎn),點(diǎn)C為上一點(diǎn)(不與O、A兩點(diǎn)重合),則cosC的值為()A. B. C. D.6.在平面直角坐標(biāo)系xOy中,以點(diǎn)(3,4)為圓心,4為半徑的圓與y軸()A.相交 B.相切 C.相離 D.無法確定7.下列說法正確的是()A.某一事件發(fā)生的可能性非常大就是必然事件B.2020年1月27日杭州會下雪是隨機(jī)事件C.概率很小的事情不可能發(fā)生D.投擲一枚質(zhì)地均勻的硬幣1000次,正面朝上的次數(shù)一定是500次8.將拋物線y=(x﹣2)2﹣8向左平移3個單位,再向上平移5個單位,得到拋物線的表達(dá)式為()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣39.如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線(n為常數(shù))與扇形OAB的邊界總有兩個公共點(diǎn)則n的取值范圍是()A.n>-4 B. C. D.10.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點(diǎn)A逆時針旋轉(zhuǎn)后,能與△ACP′重合,如果AP=3cm,那么PP′的長為()A. B. C. D.二、填空題(每小題3分,共24分)11.在中,,,,則____________12.如圖,O是正方形ABCD邊上一點(diǎn),以O(shè)為圓心,OB為半徑畫圓與AD交于點(diǎn)E,過點(diǎn)E作⊙O的切線交CD于F,將△DEF沿EF對折,點(diǎn)D的對稱點(diǎn)D'恰好落在⊙O上.若AB=6,則OB的長為_____.13.若關(guān)于的一元二次方程沒有實(shí)數(shù)根.化簡:=____________.14.如圖,過圓外一點(diǎn)作圓的一條割線交于點(diǎn),若,,且,則_______.15.如圖,點(diǎn)A,B是雙曲線上的點(diǎn),分別過點(diǎn)A,B作軸和軸的垂線段,若圖中陰影部分的面積為2,則兩個空白矩形面積的和為____________.16.如圖,四邊形內(nèi)接于圓,點(diǎn)關(guān)于對角線的對稱點(diǎn)落在邊上,連接.若,則的度數(shù)為__________.17.如圖,點(diǎn)在函數(shù)的圖象上,直線分別與軸、軸交于點(diǎn),且點(diǎn)的橫坐標(biāo)為4,點(diǎn)的縱坐標(biāo)為,則的面積是________.18.已知二次函數(shù)y=-x2+2x+5,當(dāng)x________時,y隨x的增大而增大三、解答題(共66分)19.(10分)閱讀對話,解答問題:(1)分別用a、b表示小冬從小麗、小兵袋子中抽出的卡片上標(biāo)有的數(shù)字,請用樹狀圖法或列表法寫出(a,b)的所有取值;(2)求在(a,b)中使關(guān)于x的一元二次方程x2﹣ax+2b=0有實(shí)數(shù)根的概率.20.(6分)(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計(jì)■1(1)寫出a,b,c的值;(2)請估計(jì)這1000名學(xué)生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.21.(6分)閱讀下列材料,然后解答問題.經(jīng)過正四邊形(即正方形)各頂點(diǎn)的圓叫做這個正四邊形的外接圓,圓心是正四邊形的對稱中心,這個正四邊形叫做這個圓的內(nèi)接正四邊形.如圖,正方形ABCD內(nèi)接于⊙O,⊙O的面積為S1,正方形ABCD的面積為S1.以圓心O為頂點(diǎn)作∠MON,使∠MON=90°.將∠MON繞點(diǎn)O旋轉(zhuǎn),OM、ON分別與⊙O交于點(diǎn)E、F,分別與正方形ABCD的邊交于點(diǎn)G、H.設(shè)由OE、OF、及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S.(1)當(dāng)OM經(jīng)過點(diǎn)A時(如圖①),則S、S1、S1之間的關(guān)系為:(用含S1、S1的代數(shù)式表示);(1)當(dāng)OM⊥AB于G時(如圖②),則(1)中的結(jié)論仍然成立嗎?請說明理由;(3)當(dāng)∠MON旋轉(zhuǎn)到任意位置時(如圖③),則(1)中的結(jié)論任然成立嗎:請說明理由.22.(8分)某區(qū)規(guī)定學(xué)生每天戶外體育活動時間不少于1小時,為了解學(xué)生參加戶外體育活動的情況,對部分學(xué)生每天參加戶外體育活動的時間進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖的統(tǒng)計(jì)圖表(不完整).請根據(jù)圖表中的信息,解答下列問題:(1)表中的a=_____,將頻數(shù)分布直方圖補(bǔ)全;(2)該區(qū)8000名學(xué)生中,每天戶外體育活動的時間不足1小時的學(xué)生大約有多少名?(3)若從參加戶外體育活動時間最長的3名男生和1名女生中隨機(jī)抽取兩名,請用畫樹狀圖或列表法求恰好抽到1名男生和1名女生的概率.組別時間(小時)頻數(shù)(人數(shù))頻率A0≤t<0.5200.05B0.5≤t<1a0.3Cl≤t<1.51400.35D1.5≤t<2800.2E2≤t<2.5400.123.(8分)邊長為2的正方形在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)是邊的中點(diǎn),連接,點(diǎn)在第一象限,且,.以直線為對稱軸的拋物線過,兩點(diǎn).(1)求拋物線的解析式;(2)點(diǎn)從點(diǎn)出發(fā),沿射線每秒1個單位長度的速度運(yùn)動,運(yùn)動時間為秒.過點(diǎn)作于點(diǎn),當(dāng)為何值時,以點(diǎn),,為頂點(diǎn)的三角形與相似?(3)點(diǎn)為直線上一動點(diǎn),點(diǎn)為拋物線上一動點(diǎn),是否存在點(diǎn),,使得以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.24.(8分)如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3).(1)求這個二次函數(shù)的表達(dá)式;(2)若P是第四象限內(nèi)這個二次函數(shù)的圖象上任意一點(diǎn),PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M,連接PC①求線段PM的最大值;②當(dāng)△PCM是以PM為一腰的等腰三角形時,求點(diǎn)P的坐標(biāo).25.(10分)如圖,拋物線交軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線上的一個動點(diǎn),點(diǎn)的橫坐標(biāo)為.(1)求此拋物線的表達(dá)式;(2)過點(diǎn)作軸,垂足為點(diǎn),交于點(diǎn).試探究點(diǎn)P在運(yùn)動過程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請求出此時點(diǎn)的坐標(biāo),若不存在,請說明理由;(3)過點(diǎn)作,垂足為點(diǎn).請用含的代數(shù)式表示線段的長,并求出當(dāng)為何值時有最大值,最大值是多少?26.(10分)如圖,在中,,是邊上的中線,平分交于點(diǎn)、交于點(diǎn),,.(1)求的長;(2)證明:;(3)求的值.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】四邊形PAOB是扇形OMN的內(nèi)接矩形,根據(jù)矩形的性質(zhì)AB=OP=半徑,所以AB長度不變.【詳解】解:∵四邊形PAOB是扇形OMN的內(nèi)接矩形,

∴AB=OP=半徑,

當(dāng)P點(diǎn)在弧MN上移動時,半徑一定,所以AB長度不變,

故選:C.【點(diǎn)睛】本題考查了圓的認(rèn)識,矩形的性質(zhì),用到的知識點(diǎn)為:矩形的對角線相等;圓的半徑相等.2、B【解析】根據(jù)反比例函數(shù)的一般形式即可判斷.【詳解】A、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項(xiàng)錯誤;B、是一次函數(shù),正確;C、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項(xiàng)錯誤;D、不符合反比例函數(shù)的一般形式y(tǒng)=,(k≠0)的形式,選項(xiàng)錯誤.故選:B.【點(diǎn)睛】本題考查了反比例函數(shù)的定義,重點(diǎn)是將一般式y(tǒng)=(k≠0)轉(zhuǎn)化為y=kx?1(k≠0)的形式.3、B【分析】根據(jù)一元二次方程的解的定義,將x=m代入已知方程,即可求得(m2+m)的值,然后將其整體代入所求的代數(shù)式進(jìn)行求值即可.【詳解】依題意得:m2+m-1=0,

則m2+m=1,

所以2m2+2m+2018=2(m2+m)+2018=2×1+2018=1.

故選:B.【點(diǎn)睛】此題考查一元二次方程的解.解題關(guān)鍵在于能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.4、D【分析】根據(jù)已知分別求出1≤k≤5時,P點(diǎn)坐標(biāo)為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當(dāng)6≤k≤11時,P點(diǎn)坐標(biāo)為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通過觀察得到點(diǎn)的坐標(biāo)特點(diǎn),進(jìn)而求解.【詳解】解:由題可知1≤k≤5時,P點(diǎn)坐標(biāo)為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當(dāng)6≤k≤11時,P點(diǎn)坐標(biāo)為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通過以上數(shù)據(jù)可得,P點(diǎn)的縱坐標(biāo)5個一組循環(huán),∵2119÷5=413…4,∴當(dāng)k=2119時,P點(diǎn)的縱坐標(biāo)是4,橫坐標(biāo)是413+1=414,∴P(414,4),故選:D.【點(diǎn)睛】本題考查點(diǎn)的坐標(biāo)和探索規(guī)律;能夠理解題意,通過已知條件探索點(diǎn)的坐標(biāo)循環(huán)規(guī)律是解題的關(guān)鍵.5、D【詳解】如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.6、A【分析】先找出圓心到y(tǒng)軸的距離,再與圓的半徑進(jìn)行比較,若圓心到y(tǒng)軸的距離小于半徑,則圓與y軸相交,反之相離,若二者相等則相切故答案為A選項(xiàng)【詳解】根據(jù)題意,我們得到圓心與y軸距離為3,小于其半徑4,所以與y軸的關(guān)系為相交【點(diǎn)睛】本題主要考查了圓與直線的位置關(guān)系,熟練掌握圓心距與圓到直線距離的大小關(guān)系對應(yīng)的位置關(guān)系是關(guān)鍵7、B【分析】不確定事件就是隨機(jī)事件,即可能發(fā)生也可能不發(fā)生的事件,發(fā)生的概率大于2并且小于1.【詳解】解:A.某一事件發(fā)生的可能性非常大也是是隨機(jī)事件,故不正確;B.2222年1月27日杭州會下雪是隨機(jī)事件,正確;C.概率很小的事情可能發(fā)生,故不正確;D、投擲一枚質(zhì)地均勻的硬幣1222次,正面朝上的次數(shù)大約是522次,故不正確;故選:B.【點(diǎn)睛】本題考查了概率的意義,概率的意義反映的只是這一事件發(fā)生的可能性的大小,概率取值范圍:2≤p≤1,其中必然發(fā)生的事件的概率P(A)=1;不可能發(fā)生事件的概率P(A)=2;隨機(jī)事件,發(fā)生的概率大于2并且小于1.事件發(fā)生的可能性越大,概率越接近與1,事件發(fā)生的可能性越小,概率越接近于2.8、D【分析】根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】解:由“左加右減”的原則可知,將拋物線y=(x-2)2-8向左平移1個單位所得直線的解析式為:y=(x+1)2-8;

由“上加下減”的原則可知,將拋物線y=(x-5)2-8向上平移5個單位所得拋物線的解析式為:y=(x+1)2-1.

故選:D.【點(diǎn)睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.9、D【分析】根據(jù)∠AOB=45°求出直線OA的解析式,然后與拋物線解析式聯(lián)立求出有一個公共點(diǎn)時的n值,即為一個交點(diǎn)時的最大值,再求出拋物線經(jīng)過點(diǎn)B時的n的值,即為一個交點(diǎn)時的最小值,然后寫出n的取值范圍即可.【詳解】解:由圖可知,∠AOB=45°,

∴直線OA的解析式為y=x,

聯(lián)立得:,,得時,拋物線與OA有一個交點(diǎn),

此交點(diǎn)的橫坐標(biāo)為,

∵點(diǎn)B的坐標(biāo)為(2,0),

∴OA=2,∴點(diǎn)A的橫坐標(biāo)與縱坐標(biāo)均為:,

∴點(diǎn)A的坐標(biāo)為(),

∴交點(diǎn)在線段AO上;當(dāng)拋物線經(jīng)過點(diǎn)B(2,0)時,,解得n=-4,

∴要使拋物線與扇形OAB的邊界總有兩個公共點(diǎn),則實(shí)數(shù)n的取值范圍是,故選:D.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),主要利用了聯(lián)立兩函數(shù)解析式確定交點(diǎn)個數(shù)的方法,根據(jù)圖形求出有一個交點(diǎn)時的最大值與最小值是解題的關(guān)鍵.10、D【分析】由題意易證,則有,進(jìn)而可得,最后根據(jù)勾股定理可求解.【詳解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵將△ABP繞點(diǎn)A逆時針旋轉(zhuǎn)后,能與△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故選D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及等腰直角三角形的性質(zhì)與判定,熟練掌握旋轉(zhuǎn)的性質(zhì)及等腰直角三角形的性質(zhì)與判定是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)題意利用三角函數(shù)的定義可以求得AC,再利用勾股定理可求得AB.【詳解】解:由題意作圖如下:∵∠C=90°,,,∴,∴.故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)的定義及勾股定理,熟練掌握三角函數(shù)的定義以及勾股定理是解題的關(guān)鍵.12、【解析】連接OE、OD′,作OH⊥ED′于H,通過證得AEO≌△HEO(AAS),AE=EH=ED=2,設(shè)OB=OE=x.則AO=6﹣x,根據(jù)勾股定理得x2=22+(6﹣x)2,解方程即可求得結(jié)論.【詳解】解:連接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四邊形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切線,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴設(shè)OB=OE=x.則AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案為:.【點(diǎn)睛】本題是圓的綜合題目,考查了切線的性質(zhì)和判定、正方形的性質(zhì)、勾股定理,方程,全等三角形的判定與性質(zhì)等知識;本題主要考查了圓的切線及全等三角形的判定和性質(zhì),關(guān)鍵是作出輔助線利用三角形全等證明.13、【分析】首先根據(jù)關(guān)于x的一元二次方程沒有實(shí)數(shù)根求出a的取值范圍,然后利用二次根式的基本性質(zhì)化簡即可.【詳解】解:∵關(guān)于的一元二次方程沒有實(shí)數(shù)根,∴,解得,當(dāng)時,原式,故答案為:.【點(diǎn)睛】本題考查了一元二次方程的根的判別式及二次根式的基本性質(zhì),解題的關(guān)鍵是根據(jù)根的判別式確定未知數(shù)的取值范圍.14、1【分析】作OD⊥AB于D,由垂徑定理得出AD=BD,由三角函數(shù)定義得出sin∠OAB=,設(shè)OD=4x,則OC=OA=5x,OP=3+5x,由勾股定理的AD=3x,由含30角的直角三角形的性質(zhì)得出OP=2OD,得出方程3+5x=2×4x,解得x=1,得出BD=AD=3即可.【詳解】作OD⊥AB于D,如圖所示:則AD=BD,∵sin∠OAB=,∴設(shè)OD=4x,則OC=OA=5x,OP=3+5x,AD==3x,∵∠OPA=30,∴OP=2OD,∴3+5x=2×4x,解得:x=1,∴BD=AD=3,∴AB=1;故答案為:1.【點(diǎn)睛】本題看了垂徑定理、勾股定理、三角函數(shù)定義等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.15、1.【解析】試題分析:∵點(diǎn)A、B是雙曲線上的點(diǎn),∴S矩形ACOG=S矩形BEOF=6,∵S陰影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=1,故答案為1.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.16、【分析】直接利用圓內(nèi)接四邊形對角互補(bǔ),再結(jié)合三角形外角的性質(zhì)即可得出答案.【詳解】解:∵四邊形內(nèi)接于圓,,∴∠ADC=180°-115°=65°,又∵點(diǎn)關(guān)于對角線的對稱點(diǎn)落在邊上,∴∠AEC=∠ABC=115°,∴∠DAE=∠AEC-∠ADC=115°-65°=50°.故答案為:50°.【點(diǎn)睛】此題主要考查了圓內(nèi)接四邊形的性質(zhì)以及三角形的外角,正確得出∠AEC和∠ADC的度數(shù)是解題關(guān)鍵.17、【分析】作EC⊥x軸于C,EP⊥y軸于P,F(xiàn)D⊥x軸于D,F(xiàn)H⊥y軸于H,由題意可得點(diǎn)A,B的坐標(biāo)分別為(4,0),B(0,),利用待定系數(shù)法求出直線AB的解析式,再聯(lián)立反比例函數(shù)解析式求出點(diǎn),F(xiàn)的坐標(biāo).由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根據(jù)梯形面積公式計(jì)算即可.【詳解】解:如圖,作EP⊥y軸于P,EC⊥x軸于C,F(xiàn)D⊥x軸于D,F(xiàn)H⊥y軸于H,

由題意可得點(diǎn)A,B的坐標(biāo)分別為(4,0),B(0,),由點(diǎn)B的坐標(biāo)為(0,),設(shè)直線AB的解析式為y=kx+,將點(diǎn)A的坐標(biāo)代入得,0=4k+,解得k=-.∴直線AB的解析式為y=-x+.聯(lián)立一次函數(shù)與反比例函數(shù)解析式得,,解得或,即點(diǎn)E的坐標(biāo)為(1,2),點(diǎn)F的坐標(biāo)為(3,).∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,

∴S△OEF=S梯形ECDF=×(AF+CE)×CD=×(+2)×(3-1)=.故答案為:.【點(diǎn)睛】本題為一次函數(shù)與反比例函數(shù)的綜合題,考查了反比例函數(shù)k的幾何意義、一次函數(shù)解析式的求法,兩函數(shù)交點(diǎn)問題,掌握反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)的比例系數(shù)k的幾何意義,利用轉(zhuǎn)化法求面積是解決問題的關(guān)鍵.18、x<1【分析】把二次函數(shù)解析式化為頂點(diǎn)式,可求得其開口方向及對稱軸,利用二次函數(shù)的增減性可求得答案.【詳解】解:∵y=-x2+2x+5=-(x-1)2+6,

∴拋物線開口向下,對稱軸為x=1,

∴當(dāng)x<1時,y隨x的增大而增大,

故答案為:<1.【點(diǎn)睛】此題考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點(diǎn)式是解題的關(guān)鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點(diǎn)坐標(biāo)為(h,k).三、解答題(共66分)19、(1)詳見解析;(2).【解析】試題分析:(1)用列表法易得(a,b)所有情況;(2)看使關(guān)于x的一元二次方程x2﹣ax+2b=1有實(shí)數(shù)根的情況占總情況的多少即可.試題解析:(1)(a,b)對應(yīng)的表格為:a

b

1

2

3

1

(1,1)

(1,2)

(1,3)

2

(2,1)

(2,2)

(2,3)

3

(3,1)

(3,2)

(3,3)

4

(4,1)

(4,2)

(4,3)

(2)∵方程x2﹣ax+2b=1有實(shí)數(shù)根,∴△=a2﹣8b≥1.∴使a2﹣8b≥1的(a,b)有(3,1),(4,1),(4,2),∴P(△≥1)=.考點(diǎn):列表法與樹狀圖法;根的判別式.20、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【分析】(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計(jì)算出樣本總?cè)藬?shù),再分別計(jì)算出a,b,c的值;(2)先計(jì)算出競賽分?jǐn)?shù)不低于70分的頻率,根據(jù)樣本估計(jì)總體的思想,計(jì)算出1000名學(xué)生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學(xué)來自一組的情況,利用求概率公式計(jì)算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競賽分?jǐn)?shù)不低于70分的頻率是0.5+0.06+0.04=0.6,根據(jù)樣本估計(jì)總體的思想,有:1000×0.6=600(人)∴這1000名學(xué)生中有600人的競賽成績不低于70分;(3)成績是80分以上的同學(xué)共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué),情形如樹形圖所示,共有20種情況:抽取兩名同學(xué)在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學(xué)來自同一組的概率P==【點(diǎn)睛】本題考查了頻數(shù)、頻率、總數(shù)間關(guān)系及用列表法或樹形圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹形圖法適合兩步或兩步以上完成的事件;概率=所求情況數(shù)與總情況數(shù)之比.21、(1);(1)(1)中的結(jié)論仍然成立,理由見解析;(1)(1)中的結(jié)論仍然成立,理由見解析.【解析】試題分析:(1)結(jié)合正方形的性質(zhì)及等腰直角三角形的性質(zhì),容易得出結(jié)論;(1)仍然成立,可證得四邊形OGHB為正方形,則可求出陰影部分的面積為扇形OEF的面積減去正方形OGBH的面積;(3)仍然成立,過O作OR⊥AB,OS⊥BC,垂足分別為R、S,則可證明△ORG≌△OSH,可得出四邊形ORBS的面積=四邊形OGBH的面積,再利用扇形OEF的面積減正方形ORBS的面積即可得出結(jié)論.試題解析:(1)當(dāng)OM經(jīng)過點(diǎn)A時由正方形的性質(zhì)可知:∠MON=90°,∴S△OAB=S正方形ABCD=S1,S扇形OEF=S圓O=S1,∴S=S扇形OEF-S△OAB=S圓O-S正方形ABCD=S1-S1=(S1-S1),(1)結(jié)論仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圓O=S1∵∠OGB=∠EOF=∠ABC=90°,∴四邊形OGBH為矩形,∵OM⊥AB,∴BG=AB=BC=BH,∴四邊形OGBH為正方形,∴S四邊形OGBH=BG1=(AB)1=S1,∴S=S扇形OEF-S四邊形OGBH=S1-S1=(S1-S1);(3)(1)中的結(jié)論仍然成立,理由如下:∵∠EOF=90°,∴S扇形OEF=S圓O=,過O作OR⊥AB,OS⊥BC,垂足分別為R、S,由(1)可知四邊形ORBS為正方形,∴OR=OS,∵∠ROS=90°,∠MON=90°,∴∠ROG=∠SOH=90°-∠GOS,在△ROG和△SOH中,,∴△ROG≌△SOH(ASA),∴S△ORG=S△OSH,∴S四邊形OGBH=S正方形ORBS,由(1)可知S正方形ORBS=S1,∴S四邊形OGBH=S1,∴S=S扇形OEF-S四邊形OGBH=(S1-S1).考點(diǎn):圓的綜合題.22、(1)120,補(bǔ)圖見解析;(2)該區(qū)8000名學(xué)生中,每天戶外體育活動的時間不足1小時的學(xué)生大約有2800名;(3).【分析】(1)根據(jù)A組的頻數(shù)與頻率可求出總?cè)藬?shù),乘以B組的頻率即可得a值,根據(jù)a值補(bǔ)全頻數(shù)分布直方圖即可;(2)用8000乘以每天戶外體育活動的時間不足1小時的學(xué)生的頻率和即可得答案;(3)畫樹狀圖得出所有可能的情況數(shù)和抽到1名男生和1名女生的情況數(shù),利用概率公式即可得答案.【詳解】(1)∵被調(diào)查的學(xué)生總?cè)藬?shù)為20÷0.05=400,∴a=400×0.3=120,故答案為:120,補(bǔ)全圖形如下:(2)每天戶外體育活動的時間不足1小時的學(xué)生大約有8000×(0.05+0.3)=2800(名);(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中抽到1名男生和1名女生的可能性有6種.∴P(抽到1名男生和1名女學(xué)生)==.【點(diǎn)睛】本題主要考查了樹狀圖法或列表法求概率,以及頻數(shù)分布直方圖的運(yùn)用,解題時注意:當(dāng)有兩個元素時,可用樹形圖列舉,也可以列表列舉.一般來說,用樣本去估計(jì)總體時,樣本越具有代表性、容量越大,這時對總體的估計(jì)也就越精確.23、(1);(2)或時,以點(diǎn),,為頂點(diǎn)的三角形與相似;(3)存在,四邊形是平行四邊形時,,;四邊形是平行四邊形時,,;四邊形是平行四邊形時,,【分析】(1)根據(jù)正方形的性質(zhì),可得OA=OC,∠AOC=∠DGE,根據(jù)余角的性質(zhì),可得∠OCD=∠GDE,根據(jù)全等三角形的判定與性質(zhì),可得EG=OD=1,DG=OC=2,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)分類討論:若△DFP∽△COD,根據(jù)相似三角形的性質(zhì),可得∠PDF=∠DCO,根據(jù)平行線的判定與性質(zhì),可得∠PDO=∠OCP=∠AOC=90,根據(jù)矩形的判定與性質(zhì),可得PC的長;若△PFD∽△COD,根據(jù)相似三角形的性質(zhì),可得∠DPF=∠DCO,,根據(jù)等腰三角形的判定與性質(zhì),可得DF于CD的關(guān)系,根據(jù)相似三角形的相似比,可得PC的長;(3)分類討論:當(dāng)四邊形是平行四邊形時,四邊形是平行四邊形時,四邊形是平行四邊形時,根據(jù)一組對邊平行且相等的四邊形式平行四邊,可得答案.【詳解】解:(1)過點(diǎn)作軸于點(diǎn).∵四邊形是邊長為2的正方形,是的中點(diǎn),∴,,.∵,∴.∵,∴.在和中,∴,,.∴點(diǎn)的坐標(biāo)為.∵拋物線的對稱軸為直線即直線,∴可設(shè)拋物線的解析式為,將、點(diǎn)的坐標(biāo)代入解析式,得,解得.∴拋物線的解析式為;(2)①若,則,,∴,∴四邊形是矩形,∴,∴;②若,則,∴.∴.∴,∴.∵,∴,∴.∵,∴,,綜上所述:或時,以點(diǎn),,為頂點(diǎn)的三角形與相似:(3)存在,①若以DE為平行四邊形的對角線,如圖2,此時,N點(diǎn)就是拋物線的頂點(diǎn)(2,),由N、E兩點(diǎn)坐標(biāo)可求得直線NE的解析式為:y=x;∵DM∥EN,∴設(shè)DM的解析式為:y=x+b,將D(1,0)代入可求得b=?,∴DM的解析式為:y=x?,令x=2,則y=,∴M(2,);②過點(diǎn)C作CM∥DE交拋物線對稱軸于點(diǎn)M,連接ME,如圖3,∵CM∥DE,DE⊥CD,∴CM⊥CD,∵OC⊥CB,∴∠OCD=∠BCM,在△OCD和△BCM中,∴△OCD≌△BCM(ASA),∴CM=CD=DE,BM=OD=1,∴CDEM是平行四邊形,即N點(diǎn)與C占重合,∴N(0,2),M(2,3);③N點(diǎn)在拋物線對稱軸右側(cè),MN∥DE,如圖4,作NG⊥BA于點(diǎn)G,延長DM交BN于點(diǎn)H,∵M(jìn)NED是平行四邊形,∴∠MDE=MNE,∠ENH=∠DHB,∵BN∥DF,∴∠ADH=∠DHB=∠ENH,∴∠MNB=∠EDF,在△BMN和△FED中∴△BMN≌△FED(AAS),∴BM=EF=1,BN=DF=2,∴M(2,1),N(4,2);綜上所述,四邊形是平行四邊形時,,;四邊形是平行四邊形時,,;四邊形是平行四邊形時,,.【點(diǎn)睛】本題考查了二次函數(shù)綜合題,(1)利用了正方形的性質(zhì),余角的性質(zhì),全等三角形的判定與性質(zhì),待定系數(shù)法求函數(shù)解析式;(2)利用了相似三角形的性質(zhì),矩形的判定,分類討論時解題關(guān)鍵;(3)利用了平行四邊形的判定,分類討論時解題關(guān)鍵.24、(1)二次函數(shù)的表達(dá)式y(tǒng)=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).【分析】(1)根據(jù)待定系數(shù)法,可得答案;(2)①根據(jù)平行于y軸直線上兩點(diǎn)間的距離是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論