教案大數(shù)據(jù)-學(xué)習(xí)lva1app_第1頁(yè)
教案大數(shù)據(jù)-學(xué)習(xí)lva1app_第2頁(yè)
教案大數(shù)據(jù)-學(xué)習(xí)lva1app_第3頁(yè)
教案大數(shù)據(jù)-學(xué)習(xí)lva1app_第4頁(yè)
教案大數(shù)據(jù)-學(xué)習(xí)lva1app_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Apache Flink TrainingDataSet API BasicsJune 3rd, 2015DataSet APIBatch ProcessingJava, Scala, and PythonAll examples here in JavaMany concepts can be translated to the DataStream APIDocumentation available at 2DataSet API by Example3WordCount: main methodpublic static void main(String args) throws Ex

2、ception / set up the execution environment final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); / get input data either from file or use example data DataSet inputText = env.readTextFile(args0); DataSetTuple2 counts = / split up the lines in tuples containing: (word,1) in

3、putText.flatMap(new Tokenizer() / group by the tuple field 0 .groupBy(0) /sum up tuple field 1 .reduceGroup(new SumWords(); / emit result counts.writeAsCsv(args1, n, ); / execute program env.execute(WordCount Example);4Execution Environmentpublic static void main(String args) throws Exception / set

4、up the execution environment final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); / get input data either from file or use example data DataSet inputText = env.readTextFile(args0); DataSetTuple2 counts = / split up the lines in tuples containing: (word,1) inputText.flatMa

5、p(new Tokenizer() / group by the tuple field 0 .groupBy(0) /sum up tuple field 1 .reduceGroup(new SumWords(); / emit result counts.writeAsCsv(args1, n, ); / execute program env.execute(WordCount Example);5Data Sourcespublic static void main(String args) throws Exception / set up the execution enviro

6、nment final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); / get input data either from file or use example data DataSet inputText = env.readTextFile(args0); DataSetTuple2 counts = / split up the lines in tuples containing: (word,1) inputText.flatMap(new Tokenizer() / gro

7、up by the tuple field 0 .groupBy(0) /sum up tuple field 1 .reduceGroup(new SumWords(); / emit result counts.writeAsCsv(args1, n, ); / execute program env.execute(WordCount Example);6Data typespublic static void main(String args) throws Exception / set up the execution environment final ExecutionEnvi

8、ronment env = ExecutionEnvironment.getExecutionEnvironment(); / get input data either from file or use example data DataSet inputText = env.readTextFile(args0); DataSetTuple2 counts = / split up the lines in tuples containing: (word,1) inputText.flatMap(new Tokenizer() / group by the tuple field 0 .

9、groupBy(0) /sum up tuple field 1 .reduceGroup(new SumWords(); / emit result counts.writeAsCsv(args1, n, ); / execute program env.execute(WordCount Example);7Transformationspublic static void main(String args) throws Exception / set up the execution environment final ExecutionEnvironment env = Execut

10、ionEnvironment.getExecutionEnvironment(); / get input data either from file or use example data DataSet inputText = env.readTextFile(args0); DataSetTuple2 counts = / split up the lines in tuples containing: (word,1) inputText.flatMap(new Tokenizer() / group by the tuple field 0 .groupBy(0) /sum up t

11、uple field 1 .reduceGroup(new SumWords(); / emit result counts.writeAsCsv(args1, n, ); / execute program env.execute(WordCount Example);8User functionspublic static void main(String args) throws Exception / set up the execution environment final ExecutionEnvironment env = ExecutionEnvironment.getExe

12、cutionEnvironment(); / get input data either from file or use example data DataSet inputText = env.readTextFile(args0); DataSetTuple2 counts = / split up the lines in tuples containing: (word,1) inputText.flatMap(new Tokenizer() / group by the tuple field 0 .groupBy(0) /sum up tuple field 1 .reduceG

13、roup(new SumWords(); / emit result counts.writeAsCsv(args1, n, ); / execute program env.execute(WordCount Example);9DataSinkspublic static void main(String args) throws Exception / set up the execution environment final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); / get

14、 input data either from file or use example data DataSet inputText = env.readTextFile(args0); DataSetTuple2 counts = / split up the lines in tuples containing: (word,1) inputText.flatMap(new Tokenizer() / group by the tuple field 0 .groupBy(0) /sum up tuple field 1 .reduceGroup(new SumWords(); / emi

15、t result counts.writeAsCsv(args1, n, ); / execute program env.execute(WordCount Example);10Execute!public static void main(String args) throws Exception / set up the execution environment final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); / get input data either from fi

16、le or use example data DataSet inputText = env.readTextFile(args0); DataSetTuple2 counts = / split up the lines in tuples containing: (word,1) inputText.flatMap(new Tokenizer() / group by the tuple field 0 .groupBy(0) /sum up tuple field 1 .reduceGroup(new SumWords(); / emit result counts.writeAsCsv

17、(args1, n, ); / execute program env.execute(WordCount Example);11WordCount: Mappublic static class Tokenizer implements FlatMapFunctionString, Tuple2 Override public void flatMap(String value, CollectorTuple2 out) / normalize and split the line String tokens = value.toLowerCase().split(W+); / emit t

18、he pairs for (String token : tokens) if (token.length() 0) out.collect( new Tuple2(token, 1); 12WordCount: Map: Interfacepublic static class Tokenizer implements FlatMapFunctionString, Tuple2 Override public void flatMap(String value, CollectorTuple2 out) / normalize and split the line String tokens

19、 = value.toLowerCase().split(W+); / emit the pairs for (String token : tokens) if (token.length() 0) out.collect( new Tuple2(token, 1); 13WordCount: Map: Typespublic static class Tokenizer implements FlatMapFunctionString, Tuple2 Override public void flatMap(String value, CollectorTuple2 out) / norm

20、alize and split the line String tokens = value.toLowerCase().split(W+); / emit the pairs for (String token : tokens) if (token.length() 0) out.collect( new Tuple2(token, 1); 14WordCount: Map: Collectorpublic static class Tokenizer implements FlatMapFunctionString, Tuple2 Override public void flatMap

21、(String value, CollectorTuple2 out) / normalize and split the line String tokens = value.toLowerCase().split(W+); / emit the pairs for (String token : tokens) if (token.length() 0) out.collect( new Tuple2(token, 1); 15WordCount: Reducepublic static class SumWords implements GroupReduceFunctionTuple2

22、, Tuple2 Override public void reduce(IterableTuple2 values, CollectorTuple2 out) int count = 0; String word = null; for (Tuple2 tuple : values) word = tuple.f0; count+; out.collect(new Tuple2(word, count); 16WordCount: Reduce: Interfacepublic static class SumWords implements GroupReduceFunctionTuple

23、2, Tuple2 Override public void reduce(IterableTuple2 values, CollectorTuple2 out) int count = 0; String word = null; for (Tuple2 tuple : values) word = tuple.f0; count+; out.collect(new Tuple2(word, count); 17WordCount: Reduce: Typespublic static class SumWords implements GroupReduceFunctionTuple2,

24、Tuple2 Override public void reduce(IterableTuple2 values, CollectorTuple2 out) int count = 0; String word = null; for (Tuple2 tuple : values) word = tuple.f0; count+; out.collect(new Tuple2(word, count); 18WordCount: Reduce: Collectorpublic static class SumWords implements GroupReduceFunctionTuple2,

25、 Tuple2 Override public void reduce(IterableTuple2 values, CollectorTuple2 out) int count = 0; String word = null; for (Tuple2 tuple : values) word = tuple.f0; count+; out.collect(new Tuple2(word, count); 19DataSet API Concepts20Data TypesBasic Java TypesString, Long, Integer, Boolean,ArraysComposit

26、e TypesTuplesMany more (covered in the advanced slides)21TuplesThe easiest and most lightweight way of encapsulating data in FlinkTuple1 up to Tuple25Tuple2 person = new Tuple2(Max, Mustermann”);Tuple3 person = new Tuple3(Max, Mustermann, 42);Tuple4 person = new Tuple4(Max, Mustermann, 42, true);/ z

27、ero based index!String firstName = person.f0;String secondName = person.f1;Integer age = person.f2;Boolean fired = person.f3;22Transformations: MapDataSet integers = env.fromElements(1, 2, 3, 4);/ Regular Map - Takes one element and produces one elementDataSet doubleIntegers = integers.map(new MapFu

28、nction() Override public Integer map(Integer value) return value * 2; );doubleIntegers.print(); 2, 4, 6, 8/ Flat Map - Takes one element and produces zero, one, or more elements.DataSet doubleIntegers2 = integers.flatMap(new FlatMapFunction() Override public void flatMap(Integer value, Collector out

29、) out.collect(value * 2); );doubleIntegers2.print(); 2, 4, 6, 823Transformations: Filter/ The DataSetDataSet integers = env.fromElements(1, 2, 3, 4);DataSet filtered = integers.filter(new FilterFunction() Override public boolean filter(Integer value) return value != 3; );integers.print(); 1, 2, 424G

30、roupings and Reduce/ (name, age) of employeesDataSetTuple2 employees = / group by second field (age)DataSet grouped = employees.groupBy(1) / return a list of age groups with its counts .reduceGroup(new CountSameAge();25NameAgeStephan18Fabian23Julia27Romeo27Anna18DataSets can be split into groupsGrou

31、ps are defined using a common keyAgeGroupCount182231272GroupReducepublic static class CountSameAge implements GroupReduceFunction Tuple2, Tuple2 Overridepublic void reduce(IterableTuple2 values, CollectorTuple2 out) Integer ageGroup = 0;Integer countsInGroup = 0;for (Tuple2 person : values) ageGroup

32、 = person.f1;countsInGroup+;out.collect(new Tuple2(ageGroup, countsInGroup);26Joining two DataSets/ authors (id, name, email)DataSetTuple3 authors = .;/ posts (title, content, author_id)DataSetTuple3 posts = .;DataSetTuple2Tuple3, Tuple3 archive = authors.join(posts).where(0).equalTo(2);27AuthorsIdN

33、ameemail1Fabianfabian.2Juliajulia.3Maxmax.4Romeoromeo.PostsTitleContentAuthor id2.4.4.1.2Joining two DataSets/ authors (id, name, email)DataSetTuple3 authors = .;/ posts (title, content, author_id)DataSetTuple3 posts = .;DataSetTuple2Tuple3, Tuple3 archive = authors.join(posts).where(0).equalTo(2);2

34、8ArchiveIdNameemailTitleContentAuthor id1Fabianfabian.12Juliajulia.22Juliajulia.23Romeoromeo.44Romeoromeo.4Join with join function/ authors (id, name, email)DataSetTuple3 authors = .;/ posts (title, content, author_id)DataSetTuple3 posts = .;/ (title, author name)DataSetTuple2 archive = authors.join

35、(posts).where(0).equalTo(2).with(new PostsByUser();public static class PostsByUser implements JoinFunctionTuple3, Tuple3, Tuple2 Overridepublic Tuple2 join( Tuple3 left, Tuple3 right) return new Tuple2(left.f1, right.f0);29ArchiveNameTitleFabian.Julia.Julia.Romeo.Romeo.Data SourcesTextreadTextFile(“

36、/path/to/file”)CSVreadCsvFile(“/path/to/file”)CollectionfromCollection(collection)fromElements(1,2,3,4,5)30Data Sources: CollectionsExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();/ read from elementsDataSet names = env.fromElements(“Some”, “Example”, “Strings”);/ read from

37、 Java collectionList list = new ArrayList(); list.add(“Some”); list.add(“Example”); list.add(“Strings”);DataSet names = env.fromCollection(list);31Data Sources: File-BasedExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();/ read text file from local or distributed file systemD

38、ataSet localLines = env.readTextFile(”/path/to/my/textfile);/ read a CSV file with three fieldsDataSetTuple3 csvInput = env.readCsvFile(“/the/CSV/file).types(Integer.class, String.class, Double.class);/ read a CSV file with five fields, taking only two of themDataSetTuple2 csvInput = env.readCsvFile(“/the/CSV/file) / take the firs

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論