遼寧省阜新市蒙古族自治縣第二高級(jí)中學(xué)2023學(xué)年高三下學(xué)期一??荚嚁?shù)學(xué)試題(含解析)_第1頁(yè)
遼寧省阜新市蒙古族自治縣第二高級(jí)中學(xué)2023學(xué)年高三下學(xué)期一??荚嚁?shù)學(xué)試題(含解析)_第2頁(yè)
遼寧省阜新市蒙古族自治縣第二高級(jí)中學(xué)2023學(xué)年高三下學(xué)期一模考試數(shù)學(xué)試題(含解析)_第3頁(yè)
遼寧省阜新市蒙古族自治縣第二高級(jí)中學(xué)2023學(xué)年高三下學(xué)期一??荚嚁?shù)學(xué)試題(含解析)_第4頁(yè)
遼寧省阜新市蒙古族自治縣第二高級(jí)中學(xué)2023學(xué)年高三下學(xué)期一??荚嚁?shù)學(xué)試題(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知平面向量,滿足:,則的最小值為( )A5B6C7D82已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為( )ABCD3為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)

2、學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是( )A甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C甲的六大素養(yǎng)整體水平優(yōu)于乙D甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)4復(fù)數(shù)的共軛復(fù)數(shù)記作,已知復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),復(fù)數(shù):滿足.則等于( )ABCD5年部分省市將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒(méi)有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為ABCD6若集合,則ABCD7已知數(shù)列為等比數(shù)列,若,且,則( )AB或CD8執(zhí)行

3、如圖所示的程序框圖,如果輸入,則輸出屬于( )ABCD9雙曲線的左右焦點(diǎn)為,一條漸近線方程為,過(guò)點(diǎn)且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為( )AB3CD210已知圓M:x2+y2-2ay=0a0截直線x+y=0A內(nèi)切B相交C外切D相離11已知正方體的棱長(zhǎng)為1,平面與此正方體相交.對(duì)于實(shí)數(shù),如果正方體的八個(gè)頂點(diǎn)中恰好有個(gè)點(diǎn)到平面的距離等于,那么下列結(jié)論中,一定正確的是ABCD12記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域的概率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知,則_.14已知點(diǎn)是橢圓上一點(diǎn),過(guò)點(diǎn)的一條

4、直線與圓相交于兩點(diǎn),若存在點(diǎn),使得,則橢圓的離心率取值范圍為_(kāi).15西周初數(shù)學(xué)家商高在公元前1000年發(fā)現(xiàn)勾股定理的一個(gè)特例:勾三,股四,弦五.此發(fā)現(xiàn)早于畢達(dá)哥拉斯定理五百到六百年.我們把可以構(gòu)成一個(gè)直角三角形三邊的一組正整數(shù)稱(chēng)為勾股數(shù).現(xiàn)從3,4,5,6,7,8,9,10,11,12,13這11個(gè)數(shù)中隨機(jī)抽取3個(gè)數(shù),則這3個(gè)數(shù)能構(gòu)成勾股數(shù)的概率為_(kāi)16將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為_(kāi).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知奇函數(shù)的定義域?yàn)?,且?dāng)時(shí),.(1)求函數(shù)的解析式;(2)記函數(shù),若函數(shù)有3個(gè)零點(diǎn),求實(shí)

5、數(shù)的取值范圍.18(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.19(12分)已知,函數(shù).()若在區(qū)間上單調(diào)遞增,求的值;()若恒成立,求的最大值.(參考數(shù)據(jù):)20(12分)在中, 角,的對(duì)邊分別為, 其中, .(1)求角的值;(2)若,為邊上的任意一點(diǎn),求的最小值.21(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時(shí),有兩個(gè)零點(diǎn),證明:.(參考數(shù)據(jù):)22(10分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)

6、中,只有一項(xiàng)是符合題目要求的。1、B【答案解析】建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【題目詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),且,由于,所以.所以,即.當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí)由得,當(dāng)時(shí),有最小值為,即,解得.所以當(dāng)且僅當(dāng)時(shí)有最小值為.故選:B【答案點(diǎn)睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.2、B【答案解析】根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過(guò)變形求解出的周期,進(jìn)而算出.【題目詳解】為上的奇函數(shù),而函數(shù)是上的偶函數(shù),

7、故為周期函數(shù),且周期為故選:B【答案點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.3、D【答案解析】根據(jù)所給的雷達(dá)圖逐個(gè)選項(xiàng)分析即可.【題目詳解】對(duì)于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對(duì)于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對(duì)于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對(duì)于D,甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算為80分,不是最強(qiáng)的,故D錯(cuò)誤;故選:D【答案點(diǎn)睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計(jì)算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基

8、礎(chǔ)題.4、A【答案解析】根據(jù)復(fù)數(shù)的幾何意義得出復(fù)數(shù),進(jìn)而得出,由得出可計(jì)算出,由此可計(jì)算出.【題目詳解】由于復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),則,因此,.故選:A.【答案點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考查了復(fù)數(shù)的坐標(biāo)表示、共軛復(fù)數(shù)以及復(fù)數(shù)的除法,考查計(jì)算能力,屬于基礎(chǔ)題.5、B【答案解析】甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B6、C【答案解析】解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【題目詳解】因?yàn)榛?,所以,故選C.【答案點(diǎn)睛】本題考查集合的交運(yùn)算,屬于

9、容易題.7、A【答案解析】根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡(jiǎn)即可.【題目詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,.故選:A.【答案點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運(yùn)算能力,屬于基礎(chǔ)題.8、B【答案解析】由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【題目詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【答案點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類(lèi)討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9、A【答案解析】設(shè),直線的方程為,聯(lián)立方程得到,根據(jù)向量關(guān)系化簡(jiǎn)到,得到離心率.【題目詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因?yàn)?,所以為線段的中點(diǎn)

10、,所以,整理得,故該雙曲線的離心率.故選:.【答案點(diǎn)睛】本題考查了雙曲線的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.10、B【答案解析】化簡(jiǎn)圓M:x2+(y-a)2=a又N(1,1),r11、B【答案解析】此題畫(huà)出正方體模型即可快速判斷m的取值.【題目詳解】如圖(1)恰好有3個(gè)點(diǎn)到平面的距離為;如圖(2)恰好有4個(gè)點(diǎn)到平面的距離為;如圖(3)恰好有6個(gè)點(diǎn)到平面的距離為.所以本題答案為B.【答案點(diǎn)睛】本題以空間幾何體為載體考查點(diǎn),面的位置關(guān)系,考查空間想象能力,考查了學(xué)生靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力和知識(shí)方法的遷移能力,屬于難題.12、C【答案解析】據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在

11、區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計(jì)算即可得答案【題目詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,表示的平面區(qū)域即為圖中的,根據(jù)幾何概率的計(jì)算公式可得,故選:C【答案點(diǎn)睛】本題主要考查了幾何概率的計(jì)算,本題是與面積有關(guān)的幾何概率模型解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【題目詳解】,.故答案為:【答案點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題

12、.14、【答案解析】設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【題目詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡(jiǎn)得:,存在點(diǎn),使得,即,故答案為:【答案點(diǎn)睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運(yùn)用,考查直線參數(shù)方程的運(yùn)用,屬于中檔題.15、【答案解析】由組合數(shù)結(jié)合古典概型求解即可【題目詳解】從11個(gè)數(shù)中隨機(jī)抽取3個(gè)數(shù)有種不同的方法,其中能構(gòu)成勾股數(shù)的有共三種,所以,所求概率為.故答案為【答案點(diǎn)睛】本題考查古典概型與數(shù)學(xué)文化,考查組合問(wèn)題,數(shù)據(jù)處理能力和應(yīng)用意識(shí).16、【答案解析】由題意欲使圓柱側(cè)面積最大,需

13、使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【題目詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.,當(dāng)時(shí),的最大值為.故答案為:.【答案點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【答案解析】(1)根據(jù)奇函數(shù)定義,可知;令則,結(jié)合奇函數(shù)定義即可求得時(shí)的解析式,進(jìn)而得函數(shù)的解析式;(2)根據(jù)零點(diǎn)定義,可得,由函數(shù)圖像

14、分析可知曲線與直線在第三象限必1個(gè)交點(diǎn),因而需在第一象限有2個(gè)交點(diǎn),將與聯(lián)立,由判別式及兩根之和大于0,即可求得的取值范圍.【題目詳解】(1)因?yàn)楹瘮?shù)為奇函數(shù),且,故;當(dāng)時(shí),則;故.(2)令,解得,畫(huà)出函數(shù)關(guān)系如下圖所示,要使曲線與直線有3個(gè)交點(diǎn),則2個(gè)交點(diǎn)在第一象限,1個(gè)交點(diǎn)在第三象限,聯(lián)立,化簡(jiǎn)可得,令,即, 解得,所以實(shí)數(shù)的取值范圍為.【答案點(diǎn)睛】本題考查了根據(jù)函數(shù)奇偶性求解析式,分段函數(shù)圖像畫(huà)法,由函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍應(yīng)用,數(shù)形結(jié)合的應(yīng)用,屬于中檔題.18、(1);(2)【答案解析】(1)分類(lèi)討論去絕對(duì)值號(hào),即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根

15、據(jù)能同時(shí)成立,可得的最小值,即可求解.【題目詳解】(1)當(dāng)時(shí),不等式可化為,得,無(wú)解;當(dāng)-2x1時(shí),不等式可化為得x0,故01時(shí),不等式可化為,得x2,故1x 2. 綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時(shí),又當(dāng)時(shí),取得最小值,且又所以當(dāng)時(shí),與同時(shí)取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【答案點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,分類(lèi)討論,函數(shù)的最值,屬于中檔題.19、();()3.【答案解析】()先求導(dǎo),得,已知導(dǎo)函數(shù)單調(diào)遞增,又在區(qū)間上單調(diào)遞增,故,令,求得,討論得,而,故,進(jìn)而得解;()可通過(guò)必要性探路,當(dāng)時(shí),由知,又由于,則,當(dāng),結(jié)合零點(diǎn)存在定理可判斷必存在使

16、得,得,化簡(jiǎn)得,再由二次函數(shù)性質(zhì)即可求證;【題目詳解】()的定義域?yàn)?易知單調(diào)遞增,由題意有.令,則.令得.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,而又有,因此,所以.()由知,又由于,則.下面證明符合條件.若.所以.易知單調(diào)遞增,而,因此必存在使得,即.且當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;則.綜上,的最大值為3.【答案點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的增減性和最值,屬于中檔題20、(1);(2).【答案解析】(1)利用余弦定理和二倍角的正弦公式,化簡(jiǎn)即可得出結(jié)果;(2)在中, 由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.

17、【題目詳解】(1) ,由題知,則,則,;(2)在中, 由余弦定理得,設(shè), 其中.在中,所以,所以的幾何意義為兩點(diǎn)連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【答案點(diǎn)睛】本題考查正弦定理和余弦定理的實(shí)際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計(jì)算能力.21、(1);(2)證明見(jiàn)解析.【答案解析】(1)求出函數(shù)的定義域?yàn)?,分和兩種情況討論,分析函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得出關(guān)于實(shí)數(shù)的不等式,進(jìn)而可求得實(shí)數(shù)的取值范圍;(2)利用導(dǎo)數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構(gòu)造函數(shù),證明出,進(jìn)而得出,再由函數(shù)在區(qū)間上的單調(diào)性可證得結(jié)論.【題目詳解】(1)函數(shù)的定義域?yàn)椋?當(dāng)時(shí),對(duì)任意

18、的,此時(shí)函數(shù)在上為增函數(shù),函數(shù)為最大值;當(dāng)時(shí),令,得.當(dāng)時(shí),此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),此時(shí)函數(shù)單調(diào)遞減.所以,函數(shù)在處取得極大值,亦即最大值,即,解得.綜上所述,實(shí)數(shù)的取值范圍是;(2)當(dāng)時(shí),定義域?yàn)椋?dāng)時(shí),;當(dāng)時(shí),.所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.由于函數(shù)有兩個(gè)零點(diǎn)、且,構(gòu)造函數(shù),其中,令,當(dāng)時(shí),所以,函數(shù)在區(qū)間上單調(diào)遞減,則,則.所以,函數(shù)在區(qū)間上單調(diào)遞減,即,即,且,而函數(shù)在上為減函數(shù),所以,因此,.【答案點(diǎn)睛】本題考查利用函數(shù)的最值求參數(shù),同時(shí)也考查了利用導(dǎo)數(shù)證明函數(shù)不等式,利用所證不等式的結(jié)構(gòu)構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于難題.22、 (1);(2)見(jiàn)解析【答案解析】(1)將轉(zhuǎn)化為對(duì)任意恒成立,令,故只需,即可求出的值; (2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而可得,即,即可證出【題目詳解】函數(shù)的定義

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論