




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高等代數(shù)幾個(gè)重要定理的證明摘 要代數(shù)是學(xué)學(xué)的心礎(chǔ)課程,是其它課程的要提.本文共分三大部分,第一大部分主要介紹了高等代數(shù)課程的七個(gè)重要定理的內(nèi)容、證明.因高等代數(shù)中提出了許多新概念、新定義、新定理,譬如多項(xiàng)式、數(shù)域、線性空間、映射等,且都是較為抽象的內(nèi)容,故此將其中各章節(jié)中的重要定理列舉出來(lái),并尋找多個(gè)定理證明來(lái)加深對(duì)其的理解及認(rèn)識(shí).第二大部分主要介紹了在高等代數(shù)學(xué)習(xí)中遇到的問(wèn)題及解決的方法.第三大部分則主要講了高等代數(shù)在實(shí)際問(wèn)題中的應(yīng)用中的兩種應(yīng)用方法,即矩陣密碼與保密通訊和情報(bào)信息檢索模型.關(guān)鍵詞:定理證明;矩陣;行列式;線性空間;高等代數(shù)應(yīng)用AbstractHigher algebra i
2、s the core curriculum of university mathematics,and it is an important prerequisite for learning other courses. This paper is divided into three parts,and the first part mainly introduces the seven important theorems in advanced algebra course content. Because of Higher Algebra put forward many new
3、concepts and new definition, theorems, such as polynomial, the number of domain, linear space mapping, etc., which are more abstract content.Therefore one of the important theorem of various sections of the list, and to find a proof of the theorem to deepen understanding and understanding of these.T
4、he second part mainly introduces the problems and solutions in the study of higher algebra.The third part focuses on the application of advanced algebra in the practical application of the two methods, namely, matrix cryptography and secure communications and information retrieval model.Key words:Th
5、eorem proving;matrix;determinant;application of Advanced algebra目 錄TOC o 1-2 u 前 言 11 定理闡述及證明 2 HYPERLINK javascript:; 1.1因式分解及唯一性定理 21.2最大公因式存在定理 41.3最小數(shù)原理 51.4替換定理 61.5哈密爾頓-凱萊定理 81.6帶余除法 101.7行列式計(jì)算定理 12 HYPERLINK javascript:; HYPERLINK javascript:; 1.8定理:在數(shù)域上,任意一個(gè)對(duì)稱矩陣都合同于一對(duì)角矩陣 132 高等代數(shù)的重要定理在相關(guān)的對(duì)應(yīng)理
6、論中的作用、地位與應(yīng)用 132.1因式分解及唯一性定理 142.2 最大公因式存在定理 142.3 最小數(shù)定理 142.4 替換定理 142.5 哈密爾頓-凱萊定理 152.6 帶余除法 152.7 行列式計(jì)算定理 152.8 對(duì)稱矩陣合同于對(duì)角矩陣 153 高等代數(shù)的學(xué)習(xí) 15結(jié)束語(yǔ) 17參考文獻(xiàn) 18引 言高代數(shù)是范學(xué)校學(xué)業(yè)的學(xué)生所學(xué)習(xí)的一門主要,是學(xué)的繼與高.它的內(nèi)容由多項(xiàng)式理論、解理論、線性空間理論三大部分組成.這三大部分的特殊性在于其中的定理和概念較多,具體的模型稀少,可引導(dǎo)用的例題較少,計(jì)算性弱,邏輯性強(qiáng).在對(duì)高等代數(shù)幾個(gè)重要定理的證明方法的探索中,能夠改變我們的思維,增強(qiáng)大家都思
7、維能力,輯思維能力和代數(shù)計(jì)算.此外,高等代數(shù)已經(jīng)是從事科學(xué)研究的科技人員必備的數(shù)學(xué)基礎(chǔ)知識(shí),因它是理論化學(xué)與理論物理的不可替代的代數(shù)基礎(chǔ)知識(shí),也已經(jīng)滲透到了管理、經(jīng)濟(jì)、科學(xué)技術(shù)等多項(xiàng)領(lǐng)域,除此以外,矩陣又有了新的意,尤其是對(duì)矩陣的數(shù)值分析方面的貢獻(xiàn).由是對(duì)于本文探索高等代數(shù)的定理新證明又有了重大意義.1 定理闡述及證明1.1因式分解及唯一性定理: 理容:數(shù)上有的多式都可一地解為域,一些可多項(xiàng)的積,所說(shuō)的性是說(shuō),如有個(gè)分式,則,同在當(dāng)排因的次后有,且是些零數(shù). HYPERLINK javascript:; 證法一:首先要證明的式分解式是否存在,我們對(duì)的次數(shù)作數(shù)學(xué)歸納法.因?yàn)橐淮涡远囗?xiàng)式都是不可約
8、的,所以當(dāng)時(shí)結(jié)論成立.先,同設(shè)此論對(duì)于數(shù)的多項(xiàng)式已成立.如果,那么然論成,不是約的,其的次數(shù)都.由歸納假和都可以分解成數(shù)上一些多式的積.把,的分式來(lái)就可以得到的一個(gè)式.由歸納法原理,可知結(jié)論普遍成立.下證它的一性.設(shè)可以解成約項(xiàng)式的積.如果還有另一個(gè)分解,其中都可約多項(xiàng)式,于是 . (1)我們對(duì)作歸納法.當(dāng),是不可約多項(xiàng)式,由定義一定有且現(xiàn)在設(shè)可約式的時(shí)性已證.由(1)因此,能盡中的一個(gè),.因?yàn)橐部啥嗍剑?(2)在(1)式兩邊消去,就有.由歸納假設(shè),有,即, (3)并且適當(dāng)排列次序之后有,(4)即(2),(3),(4)三式加起來(lái)就是我們所要證得,即證明了分解的唯一性.1證法二:可以對(duì)因式的用數(shù)
9、學(xué)歸納法.對(duì)于可多式,也是對(duì)于的情來(lái)說(shuō),理成立.假定對(duì)于能分解成個(gè)不可約因式的乘積的多項(xiàng)式來(lái)說(shuō),定理成立.們明對(duì)于能可因的積的多項(xiàng)來(lái)說(shuō)也立.等 (1)表明,積可以被可多式整.性,若項(xiàng)與的積能被可多式,則有一能被的,且某一能被.適當(dāng)調(diào)整的次序,可以假定即.但不是可約多項(xiàng)式,而的次數(shù)是零,所以必須是一個(gè)多項(xiàng)式:(2), 把的表示式代入式(1)的右端,得:,等端除為的多項(xiàng)式,得出式,令那么是一個(gè)能分解成不約多項(xiàng)式乘積的多項(xiàng)式.于是由歸納假定得,亦即,并且可以假定(3)其及都是次多式.令,由(2)及(3)得,這樣得到明 HYPERLINK javascript:; 1.2最大公因式存在定理:如果中意個(gè)
10、項(xiàng)在中存一個(gè)大因,且表示為的一個(gè)合,即中項(xiàng)式使.證法一:數(shù)學(xué)歸納法證明:將定理證明過(guò)程中會(huì)用到的引理列出:引理1:如有式成,和有同的因式.下面用歸納證明大因式在定理.(種形證)證明 當(dāng)或時(shí),的最大公因式為或,顯然有或當(dāng)且時(shí),不妨設(shè),令,下面對(duì)n實(shí)行歸納法:.當(dāng)時(shí)設(shè),則(非零常數(shù))或,當(dāng)時(shí),于是的最大公因式為,有. 當(dāng)(非零常數(shù))時(shí),由于,故的最大公因式為,由引理,的最大公因式也為,且有定理成立.假對(duì)于的自然,定都成.看n時(shí)情形設(shè),則或, 時(shí),于是的最大公因式為,有.時(shí),設(shè),則或時(shí),的最大公因式為,由引理,的最大公因式也為,且有.當(dāng)時(shí),由歸納假設(shè),存在最大公因式,且 由引理,的最大公因式也為,進(jìn)
11、而的最大公因式也是.所以,對(duì)于一切都存在最大公因式.由于所以,取,則有.3 HYPERLINK javascript:; 1.3最小數(shù)原理:負(fù)整數(shù)集合的任意一個(gè)非空子集一定含一個(gè)最小數(shù),接下來(lái)通過(guò)構(gòu)造的方法證明最大公因式存在定理.證明:分成兩種情況當(dāng)或時(shí),的最大公因式為或,顯然有或當(dāng)且時(shí),令,記,由于,所以,則是非負(fù)整數(shù)集的一個(gè)非空子集.由最小數(shù)原理,中存在最小數(shù),故存在,且,即是中最小次數(shù)多項(xiàng)式.于是,有中多項(xiàng)式使由帶余除法或或若則,但, HYPERLINK javascript:; 即,于是,與是中最小次數(shù)多項(xiàng)式矛盾.因此,從而.同理可證:.于是是與的公因式.設(shè)是與的任一公因式,則,由得:
12、,所以是與的最大公因式,且有.1.4替換定理:設(shè)無(wú)關(guān)的量組(1)可由組(2)線表,則,且(2)中個(gè)量使得向組,(3)與量(2).證法1.由可知性無(wú)的向組 由量(2)表示,則有:可由向量組線性表示.從而,由可向量線性表示,得(3) HYPERLINK javascript:; 性關(guān).那么根據(jù)前面所提供的定理,可知至少有一個(gè)向量能用其前個(gè)向量線性表示.在向量組(3)中將除去,剩下個(gè)向量為(4)這時(shí)向量組(4)與(2)等價(jià).同理可得 (6)如果線性無(wú)關(guān)向量組的元素個(gè)數(shù),則進(jìn)行次可得向量組 (7) HYPERLINK javascript:; 則這個(gè)組(7)不含向,但量組(7)與向組(2)價(jià).此又于可
13、由,則可由性出.這與性關(guān),故.由以上的證明過(guò)程可以的知向量組同向量組(2)等價(jià). 4證法2.運(yùn)極無(wú)組的性質(zhì)證,之后過(guò)擴(kuò)極大關(guān)組來(lái)證明向量的價(jià). HYPERLINK javascript:; 設(shè)向組的極大無(wú)關(guān)組(8),然,因(1)可由線性表示 ,所也是的一個(gè)大無(wú)關(guān),又因?yàn)樾詿o(wú)關(guān),因,又,故.因?yàn)榈闹葹?然,當(dāng)選,可以把(1)為的一個(gè)極無(wú)關(guān) .因?yàn)?,均是的極無(wú)關(guān)組,因此和等價(jià),因此是極1.5哈密爾頓-凱萊定理:設(shè)是數(shù)上一個(gè)陣,是的,則:.證法一:是.因?yàn)榫仃嚩际堑亩囗?xiàng)式,次數(shù)不超過(guò),故此由矩陣的運(yùn)算性質(zhì),可以寫成.其中都是數(shù)字矩陣.設(shè) (6)而(7)比較(6)和(7)得 (8)以依次從右邊乘以(8
14、)的第一式,第二式,第式,第式,得(9)把的個(gè)式子一塊兒起來(lái),就成了,右邊,故.證法二:冪級(jí)數(shù)證法對(duì)于,由行列的拉普公式可得標(biāo)準(zhǔn)方程其中表示的伴隨矩陣,的系數(shù)取自于的形式冪級(jí)數(shù).因?yàn)樗钥赡媲覟槠淠婢仃?,因此:將寫成的次?shù)取自于的形式冪級(jí)數(shù),可得可以注意到中的元素都是的次數(shù)不超過(guò)的多項(xiàng)式,因此是零矩陣,等式兩的系數(shù),可得:,即. 51.6帶余除法:對(duì)于中兩個(gè)多項(xiàng),其中,中的項(xiàng)存在,使(1)成立,其中,并且這樣是唯一決定的.證法一:(1)中的存在性可以由高等代數(shù)北師大第四版課本上第八頁(yè)所提及的除法直接得出,如果.下面設(shè).令的次數(shù)分別為.對(duì)的次數(shù)作第二數(shù)學(xué)歸納法.當(dāng)時(shí),顯然取,(1)式成立接下來(lái)討
15、論的情形,假設(shè)當(dāng)次數(shù)時(shí),的存在已證,現(xiàn)在看當(dāng)次數(shù)等于時(shí)的情形.令的項(xiàng),然有同的,因多項(xiàng)的數(shù)或?yàn)?.7對(duì)于者,取對(duì)于者,由歸假,對(duì)在使其中,于是,也就是說(shuō),有,使 成立.由歸納法原理,對(duì)的存在性就證明了.下面明性,設(shè)另有項(xiàng)使,其中,于是,即如果,又,那么,且有,但,所以不可能立,這就,因此證法二:用限維性來(lái)證明的帶除法理.引理1:數(shù)上的任何線性關(guān)向量組構(gòu)的一基; HYPERLINK javascript:; 引理2:上一元多項(xiàng)式中,小于的組成的是上的;引理3:在中,一個(gè)互相同的項(xiàng)式組都是無(wú)關(guān)的.敘述:設(shè)是一元多項(xiàng)式環(huán)中的任意兩個(gè)多項(xiàng)式,并且,那么存在唯一一對(duì)多項(xiàng)式滿足:(1)(2)證明:設(shè)先證存
16、在性,如果,那么就是滿足定理?xiàng)l件(1)和(2)的唯一,如果,那么由引理2可知,中的個(gè)多項(xiàng)式組成的集合是線性空間的一組基.事實(shí)上,由引理3知,是一個(gè)線性無(wú)關(guān)集合,再由引理1和引理2的結(jié)論可知,它構(gòu)成了的一組基.因?yàn)?,所以在?shù)域中存在唯一的一組數(shù)令,于是滿足定理的條件.再證唯一性:由于數(shù)域中的數(shù)是唯一的,所以也是唯一的1.7行列式計(jì)算定理:1.首先給出一個(gè)上三角行列式行列其實(shí)于主對(duì)線上素乘積即行列式計(jì)算定理.2.定義:數(shù)域上列式轉(zhuǎn)化為三角行列式i ;ii ,;iii 換列式中的.比如把行列式的-2倍加到,得到再把第一行加到第三行,得到-2,我們將形如,其分為三行列式和. HYPERLINK jav
17、ascript:; 1.8定理:在數(shù)域上,任意一個(gè)對(duì)稱矩陣都合同于一對(duì)角矩陣對(duì)角矩陣:形式為的矩陣,其中是數(shù),通常稱為對(duì)角矩陣.對(duì)稱矩陣:矩陣稱為對(duì)稱矩陣,如果:數(shù)域上矩陣之,如果有上的矩陣,使.合同是間的一個(gè)關(guān)系,具備下列三個(gè)特點(diǎn):1)自反性:;2)對(duì)稱性:由即得;3) 傳遞性:由和即得.2 高等代數(shù)的重要定理在相關(guān)的對(duì)應(yīng)理論中的作用、地位與應(yīng)用2.1因式分解及唯一性定理,我們前把它成幾個(gè)能再,只是續(xù)分解這個(gè)是由于我們,并它不能,實(shí)際上這是相對(duì)于系數(shù)的數(shù)域而言的,并不是絕對(duì)的.因式分解及唯一性定理是對(duì)我們初中多項(xiàng)式分解知識(shí)有更深刻更寬廣的認(rèn)知,可是該并給出能夠解多項(xiàng)式的以上便是多項(xiàng)式理論中的
18、地位與局限.此外,初階的因式分解定理常應(yīng)用于初中考試題中.2.2 最大公因式存在定理我們?cè)诰S納的經(jīng)典控制論等學(xué)科里常常會(huì)用到最大公因式,這說(shuō)明最大公因式不僅是數(shù)學(xué)中的重要概念,而且在多個(gè)學(xué)科里都占據(jù)著不可替代的地位,因此在求解兩個(gè)多項(xiàng)式之間的最大公因式時(shí)所用的輾轉(zhuǎn)相除法是最大公因式定理的核心內(nèi)容,它又被稱為歐幾里得算法,歷史源遠(yuǎn)流長(zhǎng),是現(xiàn)代人們已得知的最古老的算法,這就是最大公因式存在定理的地位.輾轉(zhuǎn)相除法是證明與計(jì)算最大公因式的核心,并且應(yīng)用范圍十分廣泛.當(dāng)需要尋找剩余定理的數(shù)時(shí),它會(huì)被用來(lái)解丟翻圖方程;在現(xiàn)代密碼學(xué)里,RSA的主要構(gòu)成部分就是它這些都是輾轉(zhuǎn)相除法應(yīng)用里的滄海一粟.2.3 最
19、小數(shù)定理,它等故此在解決許多存在性問(wèn)題時(shí)常會(huì)用到最小數(shù)定理,證法與之結(jié)合解題常有2.4 替換定理替換定理是高等代數(shù)量空間理論的又.它應(yīng)用廣泛,可以被,也可被用于比較大無(wú)關(guān)量組向量的;亦;也可被用于證明基的擴(kuò)充性,替換定理可以使這些問(wèn)題可以得到更好的解決.2.5 哈密爾頓-凱萊定理哈密爾頓-凱萊定理是線性代數(shù)中的,是式所具備的一個(gè),它揭示了和它式之間的關(guān)系,并且在解決.哈密爾頓-凱萊定理的應(yīng)用可謂十分廣泛,在計(jì)算方面可以輔助證明方陣的冪與方陣的逆陣,在證明方面即矩陣多項(xiàng)式等于零的有關(guān)問(wèn)題中,可以使問(wèn)難快速的得到解決.2.6 帶余除法高等代數(shù)課程中占有重要地位的多項(xiàng)式的整除理論的基礎(chǔ)就是帶余除法,
20、它是初等代數(shù)中最最基礎(chǔ),最最重要也是最直白的定理及工具.帶余除法在初等代數(shù)中常被用到,常在小學(xué)初中的試卷中以應(yīng)用題的形式出現(xiàn),而在做這一類題的時(shí)候,就需要把題目外面包裹的各種各樣的情境忽略掉而直接注意題目的本質(zhì).2.7 行列式計(jì)算定理 HYPERLINK javascript:; , 計(jì)算理,學(xué)習(xí)行列式的計(jì)算是學(xué)好高等代數(shù)的重要基石.,也很要,學(xué)會(huì)行列式的,我們可以應(yīng)用它,還可以應(yīng)用它求.2.8 對(duì)稱矩陣合同于對(duì)角矩陣矩陣概念在高等代數(shù)課程的應(yīng)用與內(nèi)容中占據(jù)了非常廣泛且重要的地位.首先,線性方程組的重要性質(zhì)里就包含了矩陣的知識(shí),例如它的系數(shù)矩陣和增廣矩陣,除了線性方程組之外,許多問(wèn)題的研究也常
21、常會(huì)用到矩陣,甚至?xí)芯坑嘘P(guān)于矩陣的方面.此外,對(duì)稱矩陣、對(duì)角矩陣也是矩陣?yán)碚摰闹匾芯繉?duì)象.矩陣的應(yīng)用方面包括,保密通訊技術(shù)時(shí)常會(huì)用到矩陣,信息的解碼和編碼也是需要用到矩陣密碼這個(gè)技巧的.3 高等代數(shù)的學(xué)習(xí) HYPERLINK javascript:; 等代數(shù)與相同,是學(xué)習(xí)的大學(xué)生要學(xué)習(xí)的核心課程之,是數(shù)學(xué)在,通過(guò)對(duì)高等代數(shù)的學(xué)習(xí),我們可以加強(qiáng)自身的數(shù)學(xué)素養(yǎng).在對(duì)高等代數(shù)的學(xué)習(xí)過(guò)程中,我們應(yīng)該注意以下幾點(diǎn)要求,可以讓我們對(duì)這門課程的學(xué)習(xí)領(lǐng)悟更加深刻,更加透徹.高等代數(shù)里的抽象概念非常多,學(xué)生理解起來(lái)就有困難,譬如數(shù)域,映射,線性空間等概念,這些概念的特點(diǎn)就在于它們從很多具體的例子中被抽象出來(lái)
22、的,總的來(lái)說(shuō)學(xué)習(xí)高等代數(shù)時(shí)首要的是注意解相關(guān).一方面,等代數(shù)這門課程的理與概念基本屬于學(xué)專業(yè)的,由此,學(xué)生首先應(yīng)注重對(duì)課程義的領(lǐng)會(huì)和運(yùn)用,在充分理解定義定理后,我們對(duì)這門課的理解也就更深刻,在面對(duì)一些復(fù)雜的題目時(shí)更容易領(lǐng)會(huì)解答,從而使學(xué)生解高等代數(shù)象的內(nèi)容,也會(huì)使學(xué)生對(duì)這門課程產(chǎn)生,唯有這樣,才能對(duì)數(shù)學(xué)學(xué)習(xí)有正的度.另一方面,尋求正確的學(xué)習(xí)策略是在以培養(yǎng)學(xué)習(xí)的興趣,端正學(xué)習(xí)的態(tài)度的條件下所進(jìn)行的十足緊要的學(xué)習(xí)步驟.有些同學(xué)學(xué)習(xí)刻苦努力,但是成績(jī)不算太好,就把原因歸結(jié)為自己太笨,自暴自棄,其實(shí)這不是計(jì)算能力的問(wèn)題,而是因?yàn)楦拍罾斫饽芰Σ恍?,即?xí)對(duì)大家來(lái)說(shuō),要從、象的高等代數(shù)思維蠻困難的,故此我們?cè)趯W(xué)習(xí)過(guò)程中,不應(yīng)只是一味努力,也要注重學(xué)習(xí)方法,課前預(yù)習(xí),課后復(fù)習(xí),借力于具體的例子來(lái)理解抽象的定義定理,加深對(duì)定理的理解和掌握,尋找正確的途徑學(xué)習(xí)高等代數(shù).總而言之,學(xué)習(xí)高等代數(shù),基本上就是在熟練掌握代數(shù)方法的同時(shí)嘗試深入理解幾何意義.結(jié)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 修理廠試用期合同樣本
- 公司運(yùn)營(yíng)投資合同樣本
- 2025微型工廠租賃合同樣本
- 專業(yè)分包總價(jià)合同樣本
- 買賣公司車合同樣本
- 2025年土地買賣合同無(wú)效案例分析
- 代理車輛貸款合同范例
- kv制作合同標(biāo)準(zhǔn)文本
- 不簽用人合同標(biāo)準(zhǔn)文本
- 絲網(wǎng)合同樣本
- JT-T-1045-2016道路運(yùn)輸企業(yè)車輛技術(shù)管理規(guī)范
- FZ/T 50009.1-1998三維卷曲滌綸短纖維線密度試驗(yàn)方法單纖維長(zhǎng)度測(cè)量法
- ManagementInformationSystem管理信息系統(tǒng)雙語(yǔ)教學(xué)課件
- 氣候類型氣溫降水分布圖
- 小學(xué)生飛機(jī)知識(shí)科普課件
- 交通運(yùn)輸有限責(zé)任公司安全生產(chǎn)費(fèi)用提取使用制度
- 德陽(yáng)巴蜀文化介紹
- 三年級(jí)下冊(cè)數(shù)學(xué)課件-4.1 整體與部分 ▏滬教版 (23張PPT)
- 住 用 房 屋 租 金 計(jì) 算 表
- 7.4.2超幾何分布 課件(共14張PPT)
- 晶狀體相關(guān)的繼發(fā)性青光眼進(jìn)展課件
評(píng)論
0/150
提交評(píng)論