




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、 人教版初三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)歸納 宏大的成果和辛勤勞動(dòng)是成正比例的,有一分勞動(dòng)就有一分收獲,積累,從少到多,奇跡就可以制造出來。學(xué)習(xí)也是一樣的,需要積累,從少變多。下面是我給大家整理的一些初三數(shù)學(xué)的學(xué)問點(diǎn),盼望對大家有所關(guān)心。 九班級下冊數(shù)學(xué)學(xué)問點(diǎn)歸納 圓 重點(diǎn)圓的重要性質(zhì);直線與圓、圓與圓的位置關(guān)系;與圓有關(guān)的角的定理;與圓有關(guān)的比例線段定理。 內(nèi)容提要 一、圓的基本性質(zhì) 1.圓的定義(兩種) 2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。 3.“三點(diǎn)定圓”定理 4.垂徑定理及其推論 5.“等對等”定理及其推論 6.與圓有關(guān)的角:圓心角定義(等對等定理) 圓
2、周角定義(圓周角定理,與圓心角的關(guān)系) 弦切角定義(弦切角定理) 二、直線和圓的位置關(guān)系 1.切線的性質(zhì)(重點(diǎn)) 2.切線的判定定理(重點(diǎn)) 3.切線長定理 三、圓換圓的位置關(guān)系 1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切) 2.相切(交)兩圓連心線的性質(zhì)定理 3.兩圓的公切線:定義性質(zhì) 四、與圓有關(guān)的比例線段 1.相交弦定理 2.切割線定理 五、與和正多邊形 1.圓的內(nèi)接、外切多邊形(三角形、四邊形) 2.三角形的外接圓、內(nèi)切圓及性質(zhì) 3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì) 4.正多邊形及計(jì)算 中心角:學(xué)校數(shù)學(xué)復(fù)習(xí)提綱 內(nèi)角的一半:學(xué)校數(shù)學(xué)復(fù)習(xí)提綱(右圖) (解RtOAM可求出相關(guān)元素,學(xué)校數(shù)
3、學(xué)復(fù)習(xí)提綱、學(xué)校數(shù)學(xué)復(fù)習(xí)提綱等) 六、一組計(jì)算公式 1.圓周長公式 2.圓面積公式 3.扇形面積公式 4.弧長公式 5.弓形面積的計(jì)算(方法) 6.圓柱、圓錐的側(cè)面綻開圖及相關(guān)計(jì)算 初三下冊數(shù)學(xué)學(xué)問點(diǎn)(總結(jié)) 半徑與弦長計(jì)算,弦心距來中間站。圓上若有一切線,切點(diǎn)圓心半徑連。 切線長度的計(jì)算,勾股定理最便利。要想證明是切線,半徑垂線認(rèn)真辨。 是直徑,成半圓,想成直角徑連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。 圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對角等找完。 要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢圓。 假如遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切
4、線。 若是添上連心線,切點(diǎn)確定在上面。要作等角添個(gè)圓,證明題目少困難。 幫助線,是虛線,畫圖留意勿轉(zhuǎn)變。假如圖形較分散,對稱旋轉(zhuǎn)去試驗(yàn)。 基本作圖很關(guān)鍵,平常把握要嫻熟。解題還要多心眼,常常總結(jié)方法顯。 切勿盲目亂添線,方法敏捷應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。 虛心勤學(xué)加苦練,成果上升成直線。 九班級上冊數(shù)學(xué)復(fù)習(xí)學(xué)問點(diǎn) 一、軸對稱與軸對稱圖形: 1.軸對稱:把一個(gè)圖形沿著某一條直線折疊,假如它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這條直線對稱,兩個(gè)圖形中的對應(yīng)點(diǎn)叫做對稱點(diǎn),對應(yīng)線段叫做對稱線段。 2.軸對稱圖形:假如一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠相互重合,那么這個(gè)圖
5、形叫做軸對稱圖形,這條直線就是它的對稱軸。 留意:對稱軸是直線而不是線段 3.軸對稱的性質(zhì): (1)關(guān)于某條直線對稱的兩個(gè)圖形是全等形; (2)假如兩個(gè)圖形關(guān)于某條直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線; (3)兩個(gè)圖形關(guān)于某條直線對稱,假如它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上; (4)假如兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱。 4.線段垂直平分線: (1)定義:垂直平分一條線段的直線是這條線的垂直平分線。 (2)性質(zhì):線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等; 到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。 留意:依據(jù)線
6、段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等。 5.角的平分線: (1)定義:把一個(gè)角分成兩個(gè)相等的角的射線叫做角的平分線. (2)性質(zhì):在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等. 到一個(gè)角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上. 留意:依據(jù)角平分線的性質(zhì),三角形的三個(gè)內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等. 6.等腰三角形的性質(zhì)與判定: 性質(zhì): (1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸; (2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高相互重合; (3)等邊對等角:等腰三角形的兩個(gè)底角相等。 說明:等腰三角形的性質(zhì)除“三線合一”外,三角形中的主要線段之間也存在著特別的性質(zhì),如:等腰三角形兩底角的平分線相等;等腰三角形兩腰上的中線相等; 等腰三角形兩腰上的高相等;等腰三角形底邊上的中點(diǎn)到兩腰的距離相等。 判定定理:假如一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(簡稱:等角對等邊)。 人教版初三數(shù)學(xué)上學(xué)期學(xué)問點(diǎn)歸納相關(guān)(文章): 初三數(shù)學(xué)學(xué)問點(diǎn)歸納人教版 人教版九班級數(shù)學(xué)學(xué)問點(diǎn)歸納 人教版八班級數(shù)學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東省清遠(yuǎn)市2022-2023學(xué)年高三上學(xué)期期末教學(xué)質(zhì)量檢測英語試題
- 旅行社后勤管理工作概述
- 健身行業(yè)教練技能提升總結(jié)
- 餐飲行業(yè)市場推廣總結(jié)
- 服裝行業(yè)設(shè)計(jì)師工作經(jīng)驗(yàn)分享
- 皮革行業(yè)助理的工作概括
- 兒童用品行業(yè)營業(yè)員工作總結(jié)
- 證券公司前臺(tái)工作總結(jié)
- 銀行業(yè)務(wù)培訓(xùn)總結(jié)
- 《漫話探險(xiǎn)》課件
- DB63T 2376-2024 餐飲單位有害生物防治技術(shù)指南
- 中考語文名著《西游記》專項(xiàng)復(fù)習(xí):《三調(diào)芭蕉扇》
- 2025新年春節(jié)專用對聯(lián)蛇年春聯(lián)帶橫批
- 【MOOC】融合新聞:通往未來新聞之路-暨南大學(xué) 中國大學(xué)慕課MOOC答案
- 2025年中聯(lián)重科公司發(fā)展戰(zhàn)略和經(jīng)營計(jì)劃
- 2024年世界職業(yè)院校技能大賽中職組“工程測量組”賽項(xiàng)考試題庫(含答案)
- 半結(jié)構(gòu)化面試題100題
- 靜脈治療小組管理
- 服裝廠班組長培訓(xùn)
- 浙江省杭州二中2025屆物理高三第一學(xué)期期末聯(lián)考試題含解析
- 帶貨主播年終總結(jié)匯報(bào)
評論
0/150
提交評論