版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、信號處理原理Principle of Signal Processing.Stationary of Signal第四 章 非平穩(wěn)信號與不確定性原理信號的平穩(wěn)性短時傅立葉變換Heisenberg不確定性原理 .Stationary of SignalStationary of SignalStationary SignalSignals with frequency content unchanged in timeAll frequency components exist at all timesNon-stationary SignalFrequency changes in timeO
2、ne example: the “Chirp Signal”.Stationary of Signalx(t)=cos(2*pi*5*t)+cos(2*pi*10*t)+cos(2*pi*20*t)+cos(2*pi*50*t) .Stationary of Signalx(t)=cos(2*pi*5*t)+cos(2*pi*10*t)+cos(2*pi*20*t)+cos(2*pi*50*t) FT.Stationary of SignalTimeMagnitudeMagnitudeFrequency (Hz)TimeMagnitudeMagnitudeFrequency (Hz) Freq
3、uency: 2 Hz to 20 Hz Frequency: 20 Hz to 2 Hz.Stationary of SignalStationary of SignalNote that the exponential term in Eqn. (1) can also be written as:cos(2.pi.f.t)+j.sin(2.pi.f.t) . . . (3)The above expression has a real part of cosine of frequencyf, and an imaginary part of sine of frequencyf. So
4、 what we are actually doing is, multiplying the original signal with a complex expression which has sines and cosines of frequencyf. Then we integrate this product.Stationary of SignalStationary of SignalAt what time the frequency components occur? FT can not tell!FT only gives what frequency compon
5、ents exist in the signalThe time and frequency information can not be seen at the same timeMost of Transportation Signals are Non-stationary. (We need to know whether and also when an incident was happened.) .Stationary of Signal第x 章 非平穩(wěn)信號與不確定性原理信號的平穩(wěn)性短時傅立葉變換Heisenberg不確定性原理 STFTSHORT TERM FOURIER T
6、RANSFORMDennis Gabor (1946) Used STFT (Gabor Transform)To analyze only a small section of the signal at a time a technique called Windowing the Signal.The segment of signal is assumed Stationary x(t)is the signal itself,(t)is the window function, and*is the complex conjugate.STFTSHORT TERM FOURIER T
7、RANSFORMThe STFT of the signal is nothing but the FT of the signal multiplied by a window function.In the FT, the window is its kernel, theexpjwtfunction, which lasts at all times from minus infinity to plus infinity. Now, in STFT, the window is of finite length, thus it covers only a portion of the
8、 signal, which causes the frequency resolution to get poorer, while the FT gives the perfect frequency resolution STFTSHORT TERM FOURIER TRANSFORMA compromise between time-based and frequency-based views of a signal.both time and frequency are represented in limited precision.The precision is determ
9、ined by the size of the window.Once you choose a particular size for the time window - it will be the same for all frequencies.Many signals require a more flexible approach - so we can vary the window size to determine more accurately either time or frequency. - Wavelet TransformSTFTSHORT TERM FOURI
10、ER TRANSFORM300 Hz 200 Hz 100Hz 50HzSTFTSHORT TERM FOURIER TRANSFORM.Stationary of Signal第x 章 非平穩(wěn)信號與不確定性原理信號的平穩(wěn)性短時傅立葉變換Heisenberg不確定性原理 UncertaintyThe Heisenberg Uncertainty PrincipleSTFT is closely related to the choice of analysis windowNarrow window good time resolutionWide window (narrow band) g
11、ood frequency resolutionTwo extreme cases:(T)=(t) excellent time resolution, no frequency resolution(T)=1 excellent freq. resolution (FT), no time info!How to choose the window length?Window length defines the time and frequency resolutionsHeisenbergs inequalityCannot have arbitrarily good time and
12、frequency resolutions. One must trade one for the other. Their product is bounded from below.UncertaintyThe Heisenberg Uncertainty PrincipleThe Heisenberg Uncertainty PrincipleIn the context of harmonic analysis, a branch of mathematics, the uncertainty principle implies that one cannot at the same
13、time localize the value of a function and its Fourier transform. To wit, the following inequality holds,UncertaintyThe Heisenberg Uncertainty PrincipleThe Heisenberg Uncertainty PrincipleIn the context of signal processing, and in particular timefrequency analysis, uncertainty principles are referre
14、d to as the Gabor limit, after Dennis Gabor, or sometimes the HeisenbergGabor limit.One cannot simultaneously sharply localize a signal (function f ) in both the time domain and frequency domain (, its Fourier transform).UncertaintyThe Heisenberg Uncertainty PrincipleThe Heisenberg Uncertainty Princ
15、ipleOne cannot know the exact time-frequency representation of a signal (instance of time);What one can know are the time intervals in which certain band of frequencies exist;This is a resolution problem, which has something to do with thewidthof the window function that is used. UncertaintyThe Heis
16、enberg Uncertainty PrincipleThe resolutions in FTIn the FT there is no resolution problem in the frequency domain, i.e., we know exactly what frequencies exist; similarly there is no time resolution problem in the time domain, since we know the value of the signal at every instant of time. Conversel
17、y, the time resolution in the FT, and the frequency resolution in the time domain are zero, since we have no information about them. UncertaintyThe Heisenberg Uncertainty PrincipleDilemmaIf we use a window of infinite length, we get the FT, which gives perfect frequency resolution, but no time infor
18、mation. in order to obtain the stationarity, we have to have a short enough window, in which the signal is stationary. The narrower we make the window, the better the time resolution, and better the assumption of stationarity, but poorer the frequency resolutionUncertaintyThe Heisenberg Uncertainty PrincipleNarrow window =good time resolution, poor frequency resolution.Wide window =good frequency resolution, poor time resolution.UncertaintyThe Heisenberg Uncertainty Princi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年福建明溪縣君峰城市建設投資有限責任公司招聘筆試參考題庫附帶答案詳解
- 二零二五版農(nóng)業(yè)技術員農(nóng)業(yè)科技培訓服務合同4篇
- 2025年度木工環(huán)保材料研發(fā)與應用合同12篇
- 2024年度青海省公共營養(yǎng)師之二級營養(yǎng)師考前沖刺試卷A卷含答案
- 2025年冀教版選修3地理下冊月考試卷
- 2024-2025學年新教材高中地理第一章宇宙中的地球第一節(jié)第2課時太陽對地球的影響練習含解析中圖版必修第一冊
- 2025年外研版選修3生物下冊階段測試試卷
- 2024年度陜西省公共營養(yǎng)師之四級營養(yǎng)師考前沖刺試卷B卷含答案
- 2024年度陜西省公共營養(yǎng)師之二級營養(yǎng)師題庫檢測試卷A卷附答案
- 綿陽市二零二五年度長租公寓租賃管理合同4篇
- 鄉(xiāng)村治理中正式制度與非正式制度的關系解析
- 2024版義務教育小學數(shù)學課程標準
- 智能護理:人工智能助力的醫(yī)療創(chuàng)新
- 國家中小學智慧教育平臺培訓專題講座
- 5G+教育5G技術在智慧校園教育專網(wǎng)系統(tǒng)的應用
- 服務人員隊伍穩(wěn)定措施
- VI設計輔助圖形設計
- 淺談小學勞動教育的開展與探究 論文
- 2023年全國4月高等教育自學考試管理學原理00054試題及答案新編
- 河北省大學生調(diào)研河北社會調(diào)查活動項目申請書
- JJG 921-2021環(huán)境振動分析儀
評論
0/150
提交評論