版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 FEMDirectVibro-AcousticAnalysisCaseTutorialObjective:Thegoalofthistutorialistocalculatetheacousticresponseofaglass/PVBplate(alaminatedsafetyglasswithaPolyvinylbutyrallayerinbetween).Thetutorialincludesusingthefollowinganalysiscases:StructuralModalcaseDirectStructuralForcedResponseDirectStructuralVi
2、bro-AcousticResponseTransmissionLossThemodelcontainsaVisco-elasticfrequency-dependentmaterial.Pre-Requisites:SoftwareConfigurationsthatareneededtorunthetutorial:LicensestosetupthecaseinLMSVirtual.Lab:Desktop(VL-HEV.21.1orequivalent)andFiniteElementAcoustics(VL-VAM.36.2)Whensolvingtheacousticresponse
3、case,thelicenseforproductLMSVirtual.LabFEMVibro-AcousticsStructuralSolverVL-VAM.45.2isneeded.SolvingtheRandomPost-processingcasetogettheTransmissionLosscurvewillrequirethelicenseforRandomVibroAcousticAnalysis(VL-NVP.20.3)TutorialDataFiles:StructuralGroups.xmlSAFyoung.xlsLaminatedStructure.bdfFPmesh.
4、bdfAMLsender.bdfAMLreceiver.bdfAcousticGroups.xmlAlldatafilescanbefoundontheAPPSnDOCSDVD,inanarchivecalledVAM_DirectVA-TL.Foreaseofuse,itisbesttocopyallfilestoalocalfolder.STEPBYSTEPTutorial:STEP1AfterstartingLMSVirtual.Lab,createanewdocumentintheAcousticHarmonicFEMWorkbench(Start-AcousticsAcousticH
5、armonicFEM).STEP2SelectFile-Importfromthemainmenu.TheImportcommandcanalsobeselectedfromthecontextualmenuoftheLinksManager,byrightclickingAfileselectorwindowappearsallowingyoutospecifythefiletypeandthefilename.Formoredetails,seeImporting_DataSelectthefiletypeNASTRANBulkFile(*.bdf,*.NS,*.nas,*.data)nd
6、browseforthefileLaminatedStructure.bdfandclicktheOpenbutton.Anewdialogboxappearsrequestingtheselectionofdatathatneedstobeimportedfromthefile.Thedataentriesthatarenotavailableinthefilearegrayedout.SelectinSplitintoMultipleMeshPartsunderMeshCreationandsettheunitsystemtoMeter,Kilogram,Second,clicktheOK
7、button.ModeUnitSystem丄iD已riveUnitsoFFciitesFromUnitSystemLengthMassTimennple:TemperatureOKICancslScejricLjcldjLoddlisQSEiESSFiniteElementMeshLoddlMajSuKSBLoadsIirportFE/TestDataSetsLarrin-dtedStruLture-NcdesandElementsSpitintoMultipleMeshPartsAnalysisCaseImport丄PropertiesandMaterials沁h(yuǎn)歸畔AcousticMesh
8、MeshCr&atlonLarrinatedStrucztLiFm-WireFramervleehLarriridtedEtruLture-AcousticMeshFopropertiesFileTypeNA5TR.AkTBijikTle(*.bdf,+.N5;+.nas/.dat)FileNamed:tempLaminated5tructure.bdfMeshModelImportIReimportFileChang已千KiloqramSecundRadian匚dsiusdegreeMeterSTEP3Next,thedifferentstructuralmaterialswillbedef
9、ined.ThetwoouterlayersofthepanelaremadeofGlass.Toincorporatethe2%structuraldampingofthismaterial,itwillbemodeledasaviscoelasticmaterialwithaconstantcomplexYoungmodulus.TheinnerlayerismadeofPVB.InsertMaterialsNewMaterialsNewViscoelasticMaterial.Right-clickontheMaterialsfeatureintheSpecificationTree-J
10、-NewMaterialsNewViscoelasticMaterialDefinethematerialsasfollows:GLASSPVBYoungModulusPoissonRatioMassYoungPoissonMassDensityConstantDensityModulusRatioRealImaginary0.232500Frequency0.491066kgm3kgm3Dependent7.15e+0111.401e+009Nm2Nm2ViscoelasticMaterrF|1=1|E|NameGlassMaterialID:KII講Apply匚血也ThePVBmateri
11、alatthecenterofthewindshieldhasstrongfrequencydependentstiffnesspropertiesandisnearlyincompressible.Thefrequencydependencycanbeincorporatedinaviscoelasticmaterialusinganeditedloadfunction.ThevaluescanbeimportedfromtheExceldocumentSAFyoung.xlsasfollows:CheckFrequencyDependen,tandright-clicktheinputfi
12、eld.SelectNewFunction.Vi5coelasticMarteriaIPVBMaterialID:YoungModiulus:RealO匚onstant0Nm2QImaginary0N_m2dFrequencyDependentPoissonR.atio:*NewFunction疼1ModifyFunction電ConstantRealRemoveFun匚tianOFrequencyDependentXQeleteFunction-MassDensity:11066kgm3QKII人叩“Gri胡IntheAttributestab,enterasNameYoungsmodulu
13、sPVB.IntheValuestab,clicktheImportafilebutton,andbrowsetotheexcelfiletoselectit.3I暢piinJpgAttributesJIni吋說(shuō)FuhI血IReHWni2AllCommands0N/m2Enterl?eletESelectAllInvEftSElEction匚前1LoadFunctionEditnrLd軌21U74?21142kltfLEl|(lN/m2DispkyValueas|加LOaginaryValues:OvEr.ieuMMesges|Recorder|StackLeviel;皿匚QuOUDLASwi
14、tchtheDataFormattoLinearAmplitude/Phase(deg)becausethefilecontainsthevalueslikethat.ClicktheImportbutton.ClicktheOKbuttonoftheFunctionEditorGUI.ClicktheOKbuttonontheMaterialGUI.OntheEditedLoadFunctionSet,create(usingthecontextmenu)a2DdisplayoftypeComplex(EditedLoadFunction)ontheYoungsmodulusandcheck
15、thecurve:I.TS-l-i卸+1531ia+鯽FttMejtk-1FirmSwitksiPh/S31WExQLdknID1DjIiDj!|HFWOrefa-r血ni:右rJM-naUnihilPVSLbMJFUMvIiW31JNaUDDJLJLIBL&kTk*H怔alD.T.1GkLdSTEP4DefiningtwoStructural3DpropertiesforGlassandPVB,appliedtothestructuralgroupsGlass(withthedefinedmaterialGlass)andPVB(withthedefinedmaterialPVB).Inse
16、rtPropertiesNewStructuralPropertiesCreate3D-PropertyRight-clickonthePropertiesfeatureintheSpecificationTree-?1NewStructuralProperties-Create3D-PropertyPrapertyDefinitionProp亡rtyDeFinrtionTypeSelectionType:|SolidPropertyTGlassEditMaterialGlassQD:3NameGlassApplicationRegion!ParametersPropertyd(Automat
17、ic琢i|庁|b|ApplitationRegion:TypeSelectioHType:|SolidPropertyMoreParametErsIjAdvancedPsrameterEditingStatus-InformationFeaturerequiresupdateMaterial卩如邑4)ParametersPrapErtyld|AutomaticBeforethefollowingstepspleasemakesuretheMeshPartsaredefinedastypes:PROPERTY。-StrueturalGlass-StrueturalPVB-StrueturalTh
18、iscanbedonebygoingtoTools-SetMeshPartsTypeRight-clickonthemeshintheSpecificationTree,SetMeshPartType-SetasStructuralMeshPartSTEP5Inthenextstep,themodelmeshwillbeimportedfromtwoNastraninputfiles.TheyeachcontainameshonwhichwewillapplyanAMLproperty(AutomaticallyMatchedLayer),oneonthereceiverside,andone
19、onthesenderside.: FileImportAcousticMeshModelMesh.,andselectthefileAMLreceiver.bdfUseMeter,KilogramandSecondsunits,andincludethematerialsandproperties.Similarly,importAMLsender.bdf.Atthispointthemeshpartstypedefinitionwindowshouldlooklikethis:STEP6InsertingtheNewMaterialandpropertiesforthenewimporte
20、dmeshesInsertanewAcousticmaterialasfollows(usethedefaultvaluesforair): InsertalsoaNewFluidProperty.Callitalsoair,usethejustdefinedmaterialAir,andapplyittothetwoAcousticmeshparts(SenderandReceiverside).ShowMoreParametersOKApplyC日nt白STEP7Tofacilitatethecreationofthestructuralandacousticmodel,someeleme
21、ntgroupshavebeenpredefinedinxmlfiles.Toimportthesegroups,firstcreatemeshgroupsets.InsertaNewGroupSet,eitherfromthecontextualmenuorwithInsert-J-MeshGroupingTGroupSetByrightclickingtheGroupSetfeatureintheSpecificationTree,insertameshgroupnamedStructuralGroups,andinitimportthe5groupsfromthefileStructur
22、alGroups.xml.Right-clicktheGroupSet,anduseMeshGrouping-GroupSelectionDialog:SimilarlyinsertameshgroupnamedAcousticGroups,andinitimportthe4groupsfromthefileAcousticGroups.xmlRight-clickthegroupset,anduseagainMeshGrouping-GroupSelectionDialog:Step8Savetheanalysis,butwithoutclosing.SETTINGUPTHEACOUSTIC
23、CASESStep1Insertanewacousticautomaticallymatchedlayerpropertytotakeintoaccountthesemi-infiniteextentofthesenderandreceiverrooms.InsertanewAMLpropertybyright-clickingProperties,useNewAcousticProperties-AutomaticallyMatchedLayerPropertyApplyittothetwoAcousticgroupsAMLReceiverandAMLSender.SwitchtheRadi
24、ationsurfacetoUserDefined,andselecttheAMLReceivergroup.UserDefinedEditnAMLReceiverAutomaticallyMatchedLayerPropertyName|AutomaticallyMatchedLayerProperty.1ApplicationRegion2GroupsRadiationsurfaceforfar-fieldcalculationShowMoreParameters.Radiationsurface毬ApplyCancelStep2InsertaDirectVibro-AcousticRes
25、ponseAnalysisCasetocomputethestructuralresponseandacousticpressurefieldsinboththesenderandreceiveracousticdomainsforeachofthedistributedplanewaveexcitations:ToperformthiscalculationuseNoLoadfunctionSetandNoLoadVectorSe.tCreatenewsetsforalltherest.STEP3ExpandtheDirectVibro-AcousticResponseAnalysisCas
26、efromtheSpecificationTree,right-clicktheBoundaryConditionSetanduseAcousticSources-DistributedPlaneWaves.withaRefinementLevelof2,aRadiusof4m,andanAcousticPressureon1Pa.Theplanewaveswillbeusedtoexcitethesystemandtocalculatethetransmissionlosscharacteristicsofthepanel.Sincethepanelisnotalignedwiththexy
27、plane,thiscoordinateplanecannotbeusedtodefinethelocationoftheplanewavesources.So,fortheHalfSpacePlaneselectPlanedefinedbyGroupandselecttheacousticgroupCouplingSender.SelecttheNegativeHalfSpaceside.廠一CreateDistrlbiitedAcousiticPlaneV/avesa図HammDistributedAcousticPlaneWareParameters-Planedefined3Group
28、匚owingSenderHalfSpace5ideQPoatrve*PJegatrveOFulOKCancelClicktheOKbuttontogenerateasetof12spatiallydistributedplanewaves.Bynowthemodelshouldlooksimilartothis:elkd上d血iflflfOUSh丫圧呻衛(wèi)住劉Mil-lZl8ft:r:=L:i_,7i:q,;:口二人3、;:;:F仏LUIn-LJ.C.JlvCri.ill.fcrd-4”ErHr);Gwpfn】SurfpESll才口曲:lWtr:-:i-st(Raspo1:MjIsca.I.淞匹
29、命&監(jiān)魚(yú)盂田0_SL畫(huà)國(guó).宣矣-醴*C加3-1:zlfirrcrtF臂密血1V|M:!1i.注11上亠UM匸|jJ:mi_衫Lai*tvJtseRdt匕電勺-1rMr:envi-tdd-理.rksF/wascr.L # Step4Wewillnowrestraintheborderoftheglasspanel.Right-clicktheRestraintSet,addanAdvancedRestraintonthe3TranslationalDOFs,anduseassupporttheStructuralGroupBC.sAdvFressixe(rod渤wines)O.4G20.3S0.
30、3W0.16O.O9L0CI.017B-0.201CmBFn?QuencyDCasePressureinodalvaluer).1507.95H2LoadCondiliont2Youcanalsodisplaythe2DimagecurvefortheAcousticPowerontheKirchhoffsurfaceRight-clicktheDirectVibro-AcousticResponseSolutionSet.1featureandselectNewFunctionDisplay.fromthecontextualmenu.TheNewFunctionDisplaydialogb
31、oxwillappearrequestingyoutoselectthedifferentdisplayimages.AlsoyoucanusetheLbuttonfromthetoolbarandselecttheSolutionSetfeature.AthirdpossibilityistousethemenuInsert-2D/3DImagesNewFunctionDisplaySelectthe2DDisplayfromthelistandclicktheFinishbutton.Anewwindow,containingX-andY-axesalongwiththeSelectDat
32、adialogboxwillnowappear.IntheSelectDatadialogbox,selectKirchhoffSurfaceRadiation:SandclicktheDisplaybuttonAseachofthedistributedplanewavesourcesareindependent,thesoundpowercanbeobtainedbysimplyaddingtheindividualcontributions.So,selectall12DataCases,andchecktheoptionSumoverdatacases.Switchthex-axisf
33、ormattoOctaves,andtheY-axistodB(RMS).Youcanusedotmarkersforthecurvebyright-clickingit,usingtheOmandinitscontextmenu,andthenchangingthesettingsintheVisualizationtab.SaveyourmodelStep9Togetthetransmissionlosscurve,weneedtodividethetotalacousticpoweronthereceiversidebythetotalpoweronthesenderside.Befor
34、ewecandothat,weneedtocombinetheindividualcases(oneforeachdistributedplanewavesource)togetthetotalpowercurves.InsertaRandomPost-processingCasewithInsert-potherAnalysisCasesRandomPost-ProcessingCase.Refertothesolutionofthepreviousresponsecase,andselecttoprocessforaCrossPowerSetwithUnitaryUncorrelatedL
35、oadCases:UpdateitssolutionusingthecontextmenuonitssolutionfeatureRandomResponseSolutionSet.X.Thiswillgofast.Right-clickthesub-solutionGlobalIndicatorSet.XandcreateaNewFunctionDisplayonit.Selectthe2DDisplayasscenario,andclicktheFinishbutton.A2DdisplaywindowwillappearwiththeSelectDatadialogboxopen.Int
36、heGeneraltab,switchthedrop-downselectortoTransmissionLoss,andselecttheentryCoupledSurface:SandclicktheDisplaybutton.YoucanseeaTLvalueof30.461911dBforthe319.996Hzoctaveband: 訴.CTJg加i:i|OT.4Gligi13陽(yáng).毋艮|PnpomriBf嚀MflWFjnclonHHjRnprwA*otobdindAieriiTiLocil TheoryforPanelTransmissionLossCalculationofTran
37、smissionLossusingVibro-AcousticFEMThistopicdescribeshowtosetupamodelandthecomputationtocomputetheTransmissionLoss(e.g.forapanel)usingtheLMSVirtual.Labtools.Step1.ImportofanAcousticandStructuralmeshImport_an_acoustic_meshandastructuralmeshwiththemodaldataintheAcousticHarmonicFEMworkbench.Thereisnonee
38、dtohaveafieldpointmesh.Step2.CreateaNewAcousticPropertyDefinetheAcousticPropertiesincludingfluidpropertiesandpossibleimpedanceonthepanel.CreateanAutomatically_Matched丄ayer_(AML).propertyforthesourceroomonallfacesthatarenotcoupledtothepanelandnottouchingthejoinedwall.Thewallmustbeazerovelocityboundar
39、ycondition.AlsocreateanAutomaticallyMatchedLayer(AML)ontheanechoicroomside,whichisdefinedasaKirchhoffsurface.Step3.InserttheboundaryconditionCreateanacousticboundaryconditionbyselectingInsert-AcousticBoundaryConditionsandSourcesAcousticBoundaryConditionandSourceSetfromthemainmenu.TheBoundaryConditio
40、nSetCreationdialogboxappearsasshownintheimagebelow:BoundaryConditionSetCreation|?|XBoundaryCoriditiunSetEditionNameAcousticBoundaryConditionsandSourcesDataTypeFreqjencySpectra二|OK|匚ancelClicktheOKbuttontoclosethedialogbox.AnewAcousticBoundaryConditionsandSourcesfeatureappearsintheSpecificationTreeas
41、shownintheimagebelow:AcousticBoundaryConditionsandSourcesLodConditions # Now,similarlyaddtotheAcousticBoundaryConditionandSourcesanacousticsourceoftypeDistributed_Plane_Wavesinthesourceroom.Step4.InsertaVibro-AcousticResponseandRandomPost-ProcessingAnalysisCaseCaseInserttheModal-basedVibro-AcousticR
42、esponseAnalysisCasebyselectingInsertFEMAnalysisCasesModalBasedVibro-AcousticResponseAnalysisCasefromthemainmenu,orclicktheCreateaModalBasedVibro-AcousticResponseAnalysisuttonfromtheFEMAnalysisCasestoolbar.DefinetheMeshMappingandselectthestructuralshellsandthetwogroupsofacousticfaces(oneinthesourcero
43、omandoneinthereceiverroom).ComputetheModal-basedVibro-AcousticResponseAnalysiscase.ItwillcomputetheIncidentPowerandtheRadiatedPowerforeachsource.Similarly,insertaRandom_Post-Processing_Case,andComputeit.ItwillcomputetheTotalPowersandstoreitinasub-solutioncalledGlobalIndicatorSetas:TotalIncidentPowe,
44、rhavingPhysicalTypeasINPUT_POWERandResponseIDasCoupledSurface:S.TotalPowerradiatedbytheAcousticMesh,havingPhysicalTypeasACOUSTIC_POWERandResponseIDasKirchhoffSurfaceRadiation:.SIfyouhaveafieldpointmeshwhichisnotneededtocomputetheTransmissionLoss),itwillalsocomputetheTotalPowerontheFieldPointMeshhavi
45、ngPhysicalTypeasACOUSTIC_POWERandResponseIDasFieldPointMesh:S.TheRandomResponseSolutionSectomputesalsotheTransmissionLosswiththefollowingformula:TransmissionLossWhere,:istheIncidentPowerr:.:istheRadiatedPowerStep5:Post-ProcessingStandardresultswillbepost-processedontheanalysiscases.TheIncidentPower,
46、RadiatedPowearndTransmissionLossarestoredasExpressions,LoadFunctionsbytheGlobalIndicatorSet,andcanbedisplayedina2DFunctionDisplay.TheTransmissionLosswillbestoredwithPhysicalTypeasABSORPTIVITYandResponseIDasCoupledSurface:SManualcalculationofTransmissionLossbyusingEditedLoadFunctionStepl.InsertanEdit
47、ed丄oad_Function.ToinsertanEditedLoadFunction,selectfromthemainmenuInsert-FunctionsCreatorJbuttonavailable-EditedLoadFunctionorusetheCreateanEditedLoadFunctionintheFunctionsCreatortoolbar.Step2.ImportKirchhoffSurfaceRadiation:SfunctionfromGlobalIndicatorsoftheRandomPost-ProcessingSolutionSetoftheAcou
48、sticdocument.TakeonlytheRealPart.Step3.Again,importthefunctionAcousticPoweronFieldPointMesh:SfromGlobalIndicatorsoftheRandomPost-ProcessingSolutionSetoftheStructuraldocument.TakeonlytheRealPartandAmplitudeofthatPart.Step4.Multiplythisfunctionwith0.5.Astheactualincidentpowerishalfthepowerthroughthefi
49、eldpointmesh.Thisisbecausetheincidentpressureisimposedastotalpressureonthewall.Step5.Now,dividethesetwofunctionsandtaketheLogofthatfunctionandfinallymultiplyitwith10.Step6.Create_a_2D_displayTovisualizethecomputedTransmissionLoss,right-clicktheEditedloadfunctionintheSpecificationTreeandselecttheNewF
50、unctionDisplay.optionfromthecontextualmenu.Select2DDisplayfromthelistandclicktheFinishbutton.FromtheSelectDatadialogboxselectTransmissionLossusingthedrop-downmenu. BEMSymmetryPlaneSetThemathematicalformulationoftheBoundaryElementmethodleadstodensematrices,withtheconsequencethatalinearincreaseinmodel
51、sizeN(numberofnodesandelements,ormoregenerally,numberofDOFs)leadstoAparabolicincrease(orderN*2)fortheBEMmatrixstoragerequirementsAcubicincrease(orderN*3)fortheBEMmatrixsolutiontimeTherefore,itisveryadvantageoustoexploitsymmetrycharacteristicsinthegeometryofthesound-radiatingstructuretothefullextend.
52、Ifyouneedtomodelonlyone-half,one-quarterorone-eighthofavibratingstructure,thisleadstoadrasticreductioninmemoryrequirementsandsolutiontimefortheproblemathand.TheSymmetryPlaneSetcommandallowsyoutodefinetheacousticalsymmetryoranti-symmetryconditionswithrespecttoplanesthatareparalleltothecoordinateaxisp
53、lanes(XY,YZorXZ).TheSymmetryPlaneorBafflewillbecorrectlyvisualised,iftheMeshisAcoustic(MeshType:Acoustic)andaMeshPreprocessingSetisinsertedintheSpecificationTree.ToinsertanewSymmetryPlaneSet,clicktheInsert/EditaSymmetryPlaneSetbuttonintheAcousticModelDefinitiortoolbarorselectInsert-SymmetryPlaneSetf
54、romthemainmenu.Anewdialogboxwillappearasshownintheimagebelow.Figure:SymmetryandAnti-SymmetryPlanedialogPlanesX,YandZTheseplanesaredefinedbytheirpositionalongtheperpendiculardirectionwithrespecttothecoordinateaxisplane;forinstance,theX-symmetryplaneX=1000mmdefinesasymmetryplaneparalleltotheYZplaneand
55、passingthroughthepoint(1000,0,0).Althoughthegeometryshouldalwaysbesymmetricalinordertoallowthedefinitionofsymmetryandanti-symmetryplanes,theactualacousticalconditionscanbesymmetrical(identical)oranti-symmetrical(opposite)withrespecttotheplanedependingonthetypeofplaneselected.Thefollowingtablesummari
56、zestheeffectofdefiningsymmetricaloranti-symmetricalconditionsforbothacousticalandstructuralboundaryconditions:ACOUSTICALSTRUCTURALSYMMETRYPLANEZeronormalvelocityYn=0:RigidsurfaceZeroout-of-planetranslationsZeroin-planerotatonsANTI-SYMMETRYPLANEZeroacousticpressurep=0:FreesurfaceZeroin-planetranslati
57、onsZeroout-of-planerotationsFigure:SymmetryandAnti-SymmetryconditionssummaryUptothreemutuallyperpendicularsymmetryoranti-symmetryplanescanbedefinedsimultaneously.Ofcourse,onlyonesymmetryoranti-symmetryplanecanbedefinedparalleltoeachcoordinateaxisplaneXY,YZorXZ.Sinceacousticalsymmetryimplieszeronorma
58、lvelocity,definingasymmetryplaneisacousticallyequivalenttothepresenceofarigid,100%reflectingfloor.Inotherwords,ifyouaremodelingasituationwherethesound-radiatingstructureislocatedonahardfloor,e.g.theconcretefloorofasemi-anechoicchamber,thepresenceofthisfloorcanberepresentedsimplybyasymmetryplane.Conv
59、ersely,sinceacousticalanti-symmetryimplieszeroacousticpressure,definingananti-symmetryplaneisacousticallyequivalenttothepresenceofpressurereleasesurface.Thiskindofsurfacecanbeusedtomodelfreesurfaceslikeawater-airinterface.E.g.,ifyouneedtomodeltheacousticradiationintowaterfromasubmarineatacertaindept
60、h,youcanmodelthepresenceoftheseasurfaceabovethesubmarinebydefiningananti-symmetryplane.Whendefiningthesekindsofplanes,theyarerepresentedbycoloredsquaresurfaces.YoucanalsochangethecolorsoftheplanesbyselectingTools-OptionsAcousticsDisplaytab.Bydefault,symmetryplanesarerepresentedbysemi-transparentbrig
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全數(shù)據(jù)挖掘與分析考核試卷
- 2025年中國(guó)轉(zhuǎn)底式電爐市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)168粘接堵漏王市場(chǎng)調(diào)查研究報(bào)告
- 正確上下樓梯課程設(shè)計(jì)
- 齒輪傳動(dòng)的計(jì)算課程設(shè)計(jì)
- 通信工程課程設(shè)計(jì)名稱
- 二零二五年度飛機(jī)內(nèi)飾裝修安全責(zé)任協(xié)議
- 二零二五年度電動(dòng)車(chē)電瓶租賃與新能源汽車(chē)推廣應(yīng)用實(shí)施服務(wù)合同
- 2025年度法人借款協(xié)議書(shū)-高新技術(shù)園區(qū)基礎(chǔ)設(shè)施建設(shè)項(xiàng)目貸款協(xié)議
- 2025年度私人宅基地使用權(quán)轉(zhuǎn)讓與鄉(xiāng)村振興戰(zhàn)略合同
- 2025年度愛(ài)讀書(shū)學(xué)長(zhǎng)主辦的讀書(shū)挑戰(zhàn)賽組織合同
- 2024年滄州經(jīng)濟(jì)開(kāi)發(fā)區(qū)招聘社區(qū)工作者筆試真題
- 2025年安徽省銅陵市公安局交警支隊(duì)招聘交通輔警14人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 公共政策分析 課件 第8章政策評(píng)估;第9章政策監(jiān)控
- 人教版八年級(jí)上學(xué)期物理期末復(fù)習(xí)(壓軸60題40大考點(diǎn))
- 企業(yè)環(huán)保知識(shí)培訓(xùn)課件
- 2024年度管理評(píng)審報(bào)告
- 暨南大學(xué)《微觀經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 醫(yī)藥銷(xiāo)售合規(guī)培訓(xùn)
- DB51-T 5038-2018 四川省地面工程施工工藝標(biāo)準(zhǔn)
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)附答案
評(píng)論
0/150
提交評(píng)論