版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目
2、要求的。1設(shè),均為非零的平面向量,則“存在負數(shù),使得”是“”的A充要條件B充分不必要條件C必要不充分條件D既不充分也不必要條件2已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為( )A1B2C-1D-23定義在上的奇函數(shù)滿足,若,則( )AB0C1D24在平面直角坐標系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為( )ABCD5已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為( )ABCD6如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、分別交于、,設(shè)三棱錐的體積為,截面三角形的面
3、積為,則( )A,B,C,D,7執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為( )ABCD8設(shè)、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是( )A且B且C且D且9已知變量x,y間存在線性相關(guān)關(guān)系,其數(shù)據(jù)如下表,回歸直線方程為,則表中數(shù)據(jù)m的值為( )變量x0123變量y35.57A0.9B0.85C0.75D0.510復(fù)數(shù)的虛部是 ( )ABCD11甲在微信群中發(fā)了一個6元“拼手氣”紅包,被乙丙丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是( )ABCD12若,點C在AB上,且,設(shè),則的值為( )ABCD二、填空題
4、:本題共4小題,每小題5分,共20分。13某城市為了解該市甲、乙兩個旅游景點的游客數(shù)量情況,隨機抽取了這兩個景點20天的游客人數(shù),得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數(shù)在內(nèi)時,甲景點比乙景點多_天.14已知在ABC中,(2sin32,2cos32),(cos77,cos13),則_,ABC的面積為_15在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為_.16已知正實數(shù)滿足,則的最小值為 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,(1)求數(shù)列的通項公式;(2
5、)已知數(shù)列滿足,設(shè)數(shù)列的前項和為,求大于的最小的正整數(shù)的值18(12分) 選修4 5:不等式選講 已知都是正實數(shù),且,求證: 19(12分)如圖,在四棱錐中,側(cè)棱底面,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設(shè)點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.20(12分)已知點到拋物線C:y1=1px準線的距離為1()求C的方程及焦點F的坐標;()設(shè)點P關(guān)于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值21(12分)設(shè)函數(shù),其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的
6、下方,求實數(shù)的取值范圍;(2)設(shè),證明:對任意,都有.22(10分)在開展學(xué)習(xí)強國的活動中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計劃從兩個學(xué)習(xí)組中隨機各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)充分條件、必要條件的定義進行分析、判斷后可得結(jié)論【詳解】因為,均為非
7、零的平面向量,存在負數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當向量,的夾角為鈍角時,滿足,但此時,不共線且反向,所以必要性不成立所以“存在負數(shù),使得”是“”的充分不必要條件故選B【點睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時注意選擇恰當?shù)姆椒ㄅ袛嗝}是否正確2D【解析】由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O(shè)在AB的中垂線上,即O在兩個圓心的連線上,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質(zhì)應(yīng)用,
8、幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.3C【解析】首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,所以,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.4B【解析】依據(jù)線性約束條件畫出可行域,目標函數(shù)恒過,再分別討論的正負進一步確定目標函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對應(yīng)的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)
9、存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【點睛】本題考查由目標函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題5B【解析】計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計算能力和空間想象能力.6A【解析】設(shè),取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得,則,由余弦定理得,又,當平面平面時,排除B、D選項;因為
10、,此時,當平面平面時,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題7C【解析】由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結(jié)果,屬于基礎(chǔ)題8B【解析】由且可得,故選B.9A【解析】計算,代入回歸方程可得【詳解】由題意,解得故選:A.【點睛】本題考查線性回歸直線方程,解題關(guān)鍵是掌握性質(zhì):線性回歸直線一定過中心點10C【解析】因為 ,所以的虛部是 ,故選C.11B【解析】將所有可能的情況全部枚舉出來,再
11、根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.12B【解析】利用向量的數(shù)量積運算即可算出【詳解】解:,又在上,故選:【點睛】本題主要考查了向量的基本運算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識的綜合應(yīng)用二、填空題:本題共4小題,每小題5分,共20分。1372【解析】根據(jù)給定的莖葉圖,得到游客人數(shù)在內(nèi)時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數(shù),得到答案.【詳解】由題意,根據(jù)給定的莖
12、葉圖可得,在隨機抽取了這兩個景點20天的游客人數(shù)中,游客人數(shù)在內(nèi)時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數(shù)在內(nèi)時,甲景點比乙景點多天.故答案為:.【點睛】本題主要考查了莖葉圖的應(yīng)用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14 【解析】根據(jù)向量數(shù)量積的坐標表示結(jié)合兩角差的正弦公式的逆用即可得解;結(jié)合求出,根據(jù)面積公式即可得解.【詳解】2(sin32cos77cos32sin77),故答案為:【點睛】此題考查平面向量與三角函數(shù)解三角形綜合應(yīng)用,涉及平面向量數(shù)量積的坐標表示,三角恒等變換,根據(jù)三角形面積公式求解三角形面積,綜合性
13、強.15【解析】設(shè)是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,所以平面,所以.由于,所以,也即,所以四邊形是矩形. 而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.164【解析】由題意結(jié)合代數(shù)式的特點和均值不等式的結(jié)論整理計算即可求得最終結(jié)果.【詳解】.當且僅當時等號成立.據(jù)此可知:的最小值為4.【點睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的
14、式子,然后利用基本不等式求解最值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)4【解析】(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,又是與的等比中項,設(shè)數(shù)列的公差為,且,則,解得,;由題意可知 ,得:,由得, 滿足條件的最小的正整數(shù)的值為【點睛】本題考查等差數(shù)列的通項公式和前項和公式及錯位相減法求和. (1)解決等差數(shù)列通項的思路(1)在等差數(shù)列中,是最基本的兩個量,一般可設(shè)出和,利用等差數(shù)列的通項公式和前項和公式列方程
15、(組)求解即可. (2)錯位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解; 在寫“”與“”的表達式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式18見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證試題解析:證明:,又,考點:柯西不等式19(1)為中點,理由見解析;(2)當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【解析】(1)為中點,可利用中位線與平行四邊形性質(zhì)證明,從而證明平面平面;(2)以A為原點,分別以,所在直線為、軸建立空間直角坐標系,利用向量
16、法求出當點在線段靠近的三等分點時,直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點,證明如下:分別為中點,又平面平面平面 又,且四邊形為平行四邊形,同理,平面,又 平面平面(2)以A為原點,分別以,所在直線為、軸建立空間直角坐標系則, 設(shè)直線與平面所成角為,則取平面的法向量為則令,則所以 當時,等號成立即當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【點睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學(xué)生的直觀想象與運算求解能力.20 ()C的方程為,焦點F的坐標為(1,0);()1【解析】()根據(jù)拋物線定義求出p,即可求C的方程及焦點F
17、的坐標;()設(shè)點A(x1,y1),B(x1,y1),由已知得Q(1,1),由題意直線AB斜率存在且不為0,設(shè)直線AB的方程為y=k(x+1)1(k0),與拋物線聯(lián)立可得ky1-4y+4k-8=0,利用韋達定理以及弦長公式,轉(zhuǎn)化求解|MF|NF|的值【詳解】()由已知得,所以p=1.所以拋物線C的方程為,焦點F的坐標為(1,0);(II)設(shè)點A(x1,y1),B(x1,y1),由已知得Q(1,1),由題意直線AB斜率存在且不為0.設(shè)直線AB的方程為y=k(x+1)1(k0).由得,則,.因為點A,B在拋物線C上,所以,.因為PFx軸,所以,所以|MF|NF|的值為1.【點睛】本題考查拋物線的定義
18、、標準方程及直線與拋物線中的定值問題,常用韋達定理設(shè)而不求來求解,本題解題關(guān)鍵是找出弦長與斜率之間的關(guān)系進行求解,屬于中等題.21(1) (2)證明見解析【解析】(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當時,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數(shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.當,即時,所以函數(shù)在上單調(diào)遞增,故成立,滿足題意.當,即時,設(shè),則圖象的對稱軸,所以在上存在唯一實根,設(shè)為,則,所以在上單調(diào)遞減,此時,不合題意.綜上可得,實數(shù)的取值范圍是.(2)證明:由題意得,因為當時,所以.令,則,所以在上單調(diào)遞增,即,所以,從而.由(1)知當時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調(diào)遞增,所以,即在上恒成立.綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南生物機電職業(yè)技術(shù)學(xué)院《酒店營銷實務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 【物理】《同一直線上二力的合成》(教學(xué)設(shè)計)-2024-2025學(xué)年人教版(2024)初中物理八年級下冊
- 高考物理總復(fù)習(xí)《計算題》專項測試卷含答案
- 重慶醫(yī)藥高等??茖W(xué)?!毒G色設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶公共運輸職業(yè)學(xué)院《算法分析與設(shè)計A》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州電子商務(wù)職業(yè)學(xué)院《人文地理學(xué)實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江科技學(xué)院《工程地質(zhì)與地基基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國青年政治學(xué)院《第二外語日語》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州汽車工程職業(yè)學(xué)院《走近微電子》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)“三定一聘”工作實施方案
- 財經(jīng)素養(yǎng)知識考試題及答案
- 2024年云南大理州鶴慶縣農(nóng)業(yè)農(nóng)村局招聘農(nóng)技人員6人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 2024年廣東高考政治真題考點分布匯 總- 高考政治一輪復(fù)習(xí)
- -長峰醫(yī)院火災(zāi)事故教育
- 《經(jīng)濟法基礎(chǔ)》全套教學(xué)課件
- 2024年618調(diào)味品銷售數(shù)據(jù)解讀報告-星圖數(shù)據(jù)x味動中國組委會-202406
- 雙方結(jié)清賠償協(xié)議書
- 2024年河北省中考物理試卷附答案
- 安徽省安慶四中學(xué)2024年中考猜題數(shù)學(xué)試卷含解析
- GB/T 44052-2024液壓傳動過濾器性能特性的標識
- PLM項目產(chǎn)品全生命周期建設(shè)方案
評論
0/150
提交評論