13.1 軸對稱6_第1頁
13.1 軸對稱6_第2頁
13.1 軸對稱6_第3頁
13.1 軸對稱6_第4頁
13.1 軸對稱6_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、PAGE PAGE 5課 題: 軸對稱圖形一.內(nèi)容與內(nèi)容解析1內(nèi)容軸對稱圖形和圖形的軸對稱概念,軸對稱的性質(zhì),線段垂直平分的概念。2內(nèi)容解析軸對稱是平面圖形幾何變換的一種,它是研究線段,角,等腰三角形,矩形,菱形,圓等圖形性質(zhì)的基礎(chǔ),也是利用軸對稱設(shè)計圖案,用坐標(biāo)表示軸對稱等的知識基礎(chǔ),在現(xiàn)實(shí)生活中有關(guān)泛應(yīng)用。線段垂直平分線垂直且平分線段,它是研究軸對稱圖形及軸對稱的兩個圖形時的最關(guān)鍵的直線對稱軸。本節(jié)從觀察生活中的軸對稱現(xiàn)象出發(fā),通過生活中平面圖形的實(shí)例,抽象概括出軸對稱圖形的本質(zhì)特征,并結(jié)合具體的生活圖形,類比得出兩個圖形成軸對稱的概念。在此基礎(chǔ)上,通過探索成軸對稱的圖形的對稱軸與對應(yīng)點(diǎn)所

2、連線段之間的關(guān)系獲得性質(zhì),并類比其過程,得到軸對稱圖形的性質(zhì)。整個過程是由具體到抽象的過程,也體現(xiàn)了類比方法在研究數(shù)學(xué)問題中的重要作用?;谝陨戏治?,確定本節(jié)課教學(xué)重點(diǎn):軸對稱的概念和性質(zhì)。二.目標(biāo)與目標(biāo)解析1目標(biāo)(1)了解軸對稱圖形和兩個圖形成軸對稱的概念,直到軸對稱圖形和兩個圖形成軸對稱的區(qū)別和聯(lián)系。掌握并會運(yùn)用線段垂直平分線的概念(2)通過探究掌握兩個圖形關(guān)于直線對稱的性質(zhì),體會由具體到抽象認(rèn)識問題的過程,感悟類比方法在研究數(shù)學(xué)問題中的作用。(3)通過對軸對稱圖形的研究理解軸對稱的性質(zhì),進(jìn)一步培養(yǎng)學(xué)生的抽象能力。通過類比的學(xué)習(xí),使學(xué)深感受類比的好處。感知事物內(nèi)在聯(lián)系,增強(qiáng)學(xué)生創(chuàng)造美好生活

3、的信心。2目標(biāo)解析達(dá)成目標(biāo)(1)的標(biāo)志是學(xué)生能通過具體實(shí)例,抽象出軸對稱圖形和兩個圖形成軸對稱的特征,能識別簡單的軸對稱圖形。兩個圖形成軸對稱及對稱軸,知道軸對稱在現(xiàn)實(shí)生活中具有廣泛應(yīng)用價值,知道軸對稱圖形是一個圖形,它沿對稱軸折疊后能夠重合;一個軸對稱圖形沿對稱軸可以分成軸對稱的兩個圖形,成軸對稱的兩個圖形也可以看成是一個軸對稱圖形,達(dá)成第目標(biāo)(2)的標(biāo)志是:學(xué)生能夠根據(jù)兩個圖形關(guān)于某條直線成軸對稱的概念,結(jié)合圖形發(fā)現(xiàn)并概括出成軸對稱的兩個圖形的性質(zhì),并類比其探索思路和探索方法得出軸對稱圖形的性質(zhì)。達(dá)成目標(biāo)(3)的標(biāo)志是:學(xué)生知道線段垂直平分線的特征,知道它在軸對稱中的地位和作用,感悟類比方

4、法的便捷和有效。三.教學(xué)問題診斷分析學(xué)生在小學(xué)已學(xué)習(xí)過軸對稱,能識別簡單的軸對稱圖形及其對稱軸,但對稱圖形和兩個圖形成軸對稱的概念還是首次接觸,學(xué)生在了解軸對稱圖形和兩個圖形成軸對稱的區(qū)別和聯(lián)系上還會有一定的困難。教學(xué)時,教師要充分利用具體圖形讓學(xué)生獲得感性認(rèn)識,進(jìn)而了解兩者之間的關(guān)系。本節(jié)課的教學(xué)難點(diǎn)是:軸對稱圖形和兩個圖形成軸對稱的區(qū)別與聯(lián)系。四.課時安排:1課時五.教學(xué)過程問題與情境師生行為設(shè)計意圖情境導(dǎo)入:播放圖片:美麗的軸對稱圖形 展示圖片:一組具有這種特征的圖片,有京劇臉譜,汽車圖標(biāo),銀行圖標(biāo)等活動一.了解軸對稱圖形和軸對稱的概念 問題1:如圖把一張紙對著,剪出一個圖案,開這張對折

5、的紙就得到美麗的窗花。觀察得到的窗花,你能發(fā)現(xiàn)它們有什么共同的特點(diǎn)嗎?追問:你能舉出一些軸對稱圖形的例子嗎?問題2 :觀察下面圖形,你能類比前面的內(nèi)容概括出他們的共同特征嗎?追問1:你能再舉出一些兩個圖形成軸對稱的例子嗎?追問2 :你能結(jié)合具體的圖形說明軸對稱圖形和兩個圖形成軸對稱有什么區(qū)別與聯(lián)系嗎?活動二:探索成軸對稱的兩個圖形的性質(zhì)問題3:如圖,兩個三角形關(guān)于直線對稱,點(diǎn)ACE分別是點(diǎn)BDF的對稱點(diǎn),線段AB,CD,EF與直線有什么關(guān)系?追問1:你能說明其中的道理嗎?A BE Fo1o2o3C D追問2:前面的例子說明如果兩個三角形關(guān)于直線對稱,那么直線垂直平分對應(yīng)點(diǎn)連線段,如果將其中的三

6、角形改為四邊形,五邊形其他條件不變,上述結(jié)論還成立嗎?追問3:你能用數(shù)學(xué)語言概括前面的結(jié)論嗎?活動三:探索軸對稱圖形的性質(zhì)問題4:圖是一個軸對稱圖形,你能發(fā)現(xiàn)什么結(jié)論?能說明理由嗎?C DA B追問:你能用數(shù)學(xué)語言概括前面的結(jié)論嗎?活動四:歸納小結(jié)教師與學(xué)生一起回顧本節(jié)課所學(xué)的主要內(nèi)容,并請學(xué)生回答問題?;顒游澹翰贾米鳂I(yè):習(xí)題13.1第2,3,4 題選作:查閱相關(guān)資料,動手剪出一些美觀的軸對稱圖形。教師:對稱現(xiàn)象無處不在,你能說出左邊圖形的共同點(diǎn)嗎?你還能找到類似的美麗圖片嗎學(xué)生:學(xué)生發(fā)言,談?wù)勛约旱乃妶D片。板書:13.1 軸對稱圖形請你想一想:將上圖中的每一個圖形沿某條直線折疊,直線兩旁的

7、部分能完全重合嗎? 教師:結(jié)合圖片,引導(dǎo)學(xué)生進(jìn)行觀察、比較、概括,抽象出這類平面圖形的特點(diǎn)。在此基礎(chǔ)上,引導(dǎo)學(xué)生結(jié)合圖形的特征(對折后,兩側(cè)完全重疊),師生共同揭示軸對稱圖形的概念。師生活動:學(xué)生思考回答。學(xué)生思考回答并相互交流,發(fā)現(xiàn)其共同特征,每對圖形沿著直線折疊,左邊的圖形都能和右邊的圖形重合,教師進(jìn)一步說明把每一個圖形沿著某一條直線對折,如果他能和另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱。這條直線叫對稱軸,折疊后重合的電叫對應(yīng)點(diǎn),也叫對稱點(diǎn)師生活動:學(xué)生獨(dú)立思考后,進(jìn)行交流 。然后學(xué)生代表發(fā)言,教師根據(jù)學(xué)生回答情況進(jìn)行評價,如果學(xué)生有困難,可以適時追問下列問題:1成軸對稱的兩個

8、圖形全等嗎?2如果把一個軸對稱圖形沿對稱軸分成兩個圖形,那么這兩個圖形全等嗎?這兩個圖形對稱嗎?師生共同得出:把軸對稱的兩個圖形看成一個整體,他就是一個軸對稱圖形,把一個圖形沿對稱軸分成兩部分這兩個圖形關(guān)于這條軸對稱。學(xué)生嘗試回答并相互補(bǔ)充,最后得出:直線垂直同時平分AB,CD,EF學(xué)生獨(dú)立思考,學(xué)生代表匯報。師生共同交流,教師關(guān)注學(xué)生能否從這兩個圖形成軸對稱的定義出發(fā),發(fā)現(xiàn)折疊后兩點(diǎn)重合。進(jìn)而得到能否發(fā)現(xiàn)折疊后頂點(diǎn)是重合的,進(jìn)而得出這兩個角相等,垂直。同理也垂直教師提出問題,學(xué)生獨(dú)立思考,然后小組交流,學(xué)生代表匯報交流結(jié)果,學(xué)生類比前面研究過程得出結(jié)論,說明結(jié)論,教師指出:經(jīng)過線段中點(diǎn)并且垂

9、直于這條線段的直線,叫這條線段的垂直平分線。學(xué)生嘗試概括并相互補(bǔ)充,得出成軸對稱的兩個圖形的性質(zhì):若兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。教師引導(dǎo)學(xué)生將成軸對稱的兩個圖形的性質(zhì)的結(jié)論用其它的方式表述,即對稱點(diǎn)所連線段被對稱軸垂直平分,對稱軸垂直平分對稱點(diǎn)所連線段。學(xué)生嘗試概括,并相互補(bǔ)充,得出軸對稱圖形的性質(zhì)本節(jié)課主要內(nèi)容?軸對稱圖形與圖形的軸對稱的區(qū)別和聯(lián)系?3. 成軸對稱的兩個圖形有什么性質(zhì)?軸對稱圖形有什么性質(zhì)?我們是怎么樣探究的?學(xué)生課后獨(dú)立完成以生活中的圖片引入,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,在帶領(lǐng)學(xué)生領(lǐng)略美的同時,也體現(xiàn)了數(shù)學(xué)來源于生活的理念。讓學(xué)生切身感受到身邊廣泛存在著軸對稱現(xiàn)象,從而產(chǎn)生對這種變換進(jìn)一步探究的強(qiáng)烈欲望,為本節(jié)課探究問題作好鋪墊。讓學(xué)生通過圖片,感知具體的軸對稱圖形的特征,為抽象出軸對稱圖形的概念作鋪墊。通過舉例,對軸對稱圖形的本質(zhì)特征進(jìn)行再認(rèn)識。讓學(xué)生通過具體的事例,類比軸對稱圖形概念的學(xué)習(xí)過程。發(fā)現(xiàn)兩個圖形成軸對稱的特征,進(jìn)而概括出軸對稱的概念。讓學(xué)生知道軸對稱圖形和兩個圖形成軸對稱的本質(zhì)是一樣的,但同時兩者也是有區(qū)別的,軸對稱圖形指的是一個圖形的內(nèi)部關(guān)系,而兩個圖形成軸對稱指的是兩個圖形的一種位置關(guān)系。從特例出發(fā)讓學(xué)生經(jīng)歷發(fā)現(xiàn)結(jié)論,說明結(jié)論的過程,體會概念在探索過程中的重要作用擴(kuò)展

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論