INVESTMENTS 投資學 (博迪BODIE, KANE, MARCUS)Chap005 Introduction to Risk, Return, and the Historical Record_第1頁
INVESTMENTS 投資學 (博迪BODIE, KANE, MARCUS)Chap005 Introduction to Risk, Return, and the Historical Record_第2頁
INVESTMENTS 投資學 (博迪BODIE, KANE, MARCUS)Chap005 Introduction to Risk, Return, and the Historical Record_第3頁
INVESTMENTS 投資學 (博迪BODIE, KANE, MARCUS)Chap005 Introduction to Risk, Return, and the Historical Record_第4頁
INVESTMENTS 投資學 (博迪BODIE, KANE, MARCUS)Chap005 Introduction to Risk, Return, and the Historical Record_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、CHAPTER 5Introduction to Risk, Return, and the Historical RecordInterest Rate DeterminantsSupplyHouseholdsDemandBusinessesGovernments Net Supply and/or DemandFederal Reserve ActionsReal and Nominal Rates of InterestNominal interest rate: Growth rate of your moneyReal interest rate: Growth rate of yo

2、ur purchasing powerLet R = nominal rate, r = real rate and I = inflation rate. Then:Equilibrium Real Rate of InterestDetermined by:SupplyDemandGovernment actionsExpected rate of inflationFigure 5.1 Determination of the Equilibrium Real Rate of InterestEquilibrium Nominal Rate of InterestAs the infla

3、tion rate increases, investors will demand higher nominal rates of returnIf E(i) denotes current expectations of inflation, then we get the Fisher Equation:Nominal rate = real rate + inflation forecastTaxes and the Real Rate of InterestTax liabilities are based on nominal incomeGiven a tax rate (t)

4、and nominal interest rate (R), the Real after-tax rate is:The after-tax real rate of return falls as the inflation rate rises.Rates of Return for Different Holding PeriodsZero Coupon Bond, Par = $100, T=maturity, P=price, rf(T)=total risk free returnExample 5.2 Annualized Rates of ReturnEquation 5.7

5、 EAREAR definition: percentage increase in funds invested over a 1-year horizonEquation 5.8 APRAPR: annualizing using simple interestTable 5.1 APR vs. EARTable 5.2 Statistics for T-Bill Rates, Inflation Rates and Real Rates, 1926-2009Bills and Inflation, 1926-2009Moderate inflation can offset most o

6、f the nominal gains on low-risk investments.A dollar invested in T-bills from19262009 grew to $20.52, but with a real value of only $1.69.Negative correlation between real rate and inflation rate means the nominal rate responds less than 1:1 to changes in expected inflation.Figure 5.3 Interest Rates

7、 and Inflation, 1926-2009Risk and Risk PremiumsHPR = Holding Period ReturnP0 = Beginning priceP1 = Ending priceD1 = Dividend during period oneRates of Return: Single PeriodEnding Price =110Beginning Price = 100Dividend = 4HPR = (110 - 100 + 4 )/ (100) = 14%Rates of Return: Single Period ExampleExpec

8、ted returnsp(s) = probability of a stater(s) = return if a state occurss = stateExpected Return and Standard DeviationStateProb. of Stater in State Excellent.250.3100E(r) = (.25)(.31) + (.45)(.14) + (.25)(-.0675) + (0.05)(-0.52)E(r) = .0976 or 9.76%Scenario Returns: ExampleVariance (VAR):Variance an

9、d Standard DeviationStandard Deviation (STD):Scenario VAR and STDExample VAR calculation:2 = .25(.31 - 0.0976)2+.45(.14 - .0976)2 + .25(-0.0675 - 0.0976)2 + .05(-.52 - .0976)2 = .038Example STD calculation:Time Series Analysis of Past Rates of ReturnThe Arithmetic Average of rate of return:Geometric

10、 Average ReturnTV = Terminal Value of the Investmentg= geometric average rate of returnGeometric Variance and Standard Deviation FormulasEstimated Variance = expected value of squared deviationsGeometric Variance and Standard Deviation FormulasWhen eliminating the bias, Variance and Standard Deviati

11、on become:The Reward-to-Volatility (Sharpe) RatioSharpe Ratio for Portfolios:The Normal DistributionInvestment management is easier when returns are normal.Standard deviation is a good measure of risk when returns are symmetric.If security returns are symmetric, portfolio returns will be, too.Future

12、 scenarios can be estimated using only the mean and the standard deviation.Figure 5.4 The Normal DistributionNormality and Risk MeasuresWhat if excess returns are not normally distributed?Standard deviation is no longer a complete measure of riskSharpe ratio is not a complete measure of portfolio pe

13、rformanceNeed to consider skew and kurtosisSkew and KurtosisSkewKurtosisFigure 5.5A Normal and Skewed Distributions Figure 5.5B Normal and Fat-Tailed Distributions (mean = .1, SD =.2)Value at Risk (VaR)A measure of loss most frequently associated with extreme negative returnsVaR is the quantile of a

14、 distribution below which lies q % of the possible values of that distributionThe 5% VaR , commonly estimated in practice, is the return at the 5th percentile when returns are sorted from high to low.Expected Shortfall (ES)Also called conditional tail expectation (CTE)More conservative measure of do

15、wnside risk than VaRVaR takes the highest return from the worst casesES takes an average return of the worst casesLower Partial Standard Deviation (LPSD)and the Sortino RatioIssues:Need to consider negative deviations separatelyNeed to consider deviations of returns from the risk-free rate.LPSD: sim

16、ilar to usual standard deviation, but uses only negative deviations from rfSortino Ratio replaces Sharpe RatioHistoric Returns on Risky PortfoliosReturns appear normally distributedReturns are lower over the most recent half of the period (1986-2009)SD for small stocks became smaller; SD for long-te

17、rm bonds got biggerHistoric Returns on Risky PortfoliosBetter diversified portfolios have higher Sharpe RatiosNegative skewFigure 5.7 Nominal and Real Equity Returns Around the World, 1900-2000Figure 5.8 Standard Deviations of Real Equity and Bond Returns Around the World, 1900-2000Figure 5.9 Probability of Investment Outcomes After 25 Years with a Lognormal DistributionTerminal Value with Continuous Compounding When the continuously compounded rate of return on an asset is normally distributed, the effect

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論