2022屆貴州省遵義市遵義市高三第四次模擬考試數(shù)學試卷含解析_第1頁
2022屆貴州省遵義市遵義市高三第四次模擬考試數(shù)學試卷含解析_第2頁
2022屆貴州省遵義市遵義市高三第四次模擬考試數(shù)學試卷含解析_第3頁
2022屆貴州省遵義市遵義市高三第四次模擬考試數(shù)學試卷含解析_第4頁
2022屆貴州省遵義市遵義市高三第四次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),將的圖象上的所有點的橫坐標縮短到原來的,縱坐標保持不變;再把所得圖象向上平移個單位長度,得到函數(shù)的圖象,

2、若,則的值可能為( )ABCD2函數(shù)圖象的大致形狀是( )ABCD3復數(shù)(i是虛數(shù)單位)在復平面內對應的點在( )A第一象限B第二象限C第三象限D第四象限4已知函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x2,x3 (其中x1x2x3),則1-x1ex121-x2ex21-x3ex3 的值為( )A1B-1CaD-a5已知函數(shù),其中,其圖象關于直線對稱,對滿足的,有,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則函數(shù)的單調遞減區(qū)間是()ABCD6已知三點A(1,0),B(0, ),C(2,),則ABC外接圓的圓心到原點的距離為()ABCD7已知不等式組表示的平面區(qū)域的面積為9,

3、若點, 則的最大值為( )A3B6C9D128已知水平放置的ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中BOCO1,AO,那么原ABC的面積是()AB2CD9在平行六面體中,M為與的交點,若,,則與相等的向量是( )ABCD10已知復數(shù)滿足,則=( )ABCD11在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是( )ABCD12命題“”的否定為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù)為偶函數(shù),則_.14為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實驗表明,該藥物釋放量與時間的函數(shù)關系為(如圖所示),實驗表明,當藥物釋放量對人

4、體無害. (1)_;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過_分鐘人方可進入房間.15的展開式中的系數(shù)為_.16某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之_“我身邊的榜樣”評選選票候選人符號注:1同意畫“”,不同意畫“”2每張選票“”的個數(shù)不超過2時才為有效票甲乙丙三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知.(1)求不等式的解集;(2

5、)若存在,使得成立,求實數(shù)的取值范圍18(12分)某市調硏機構對該市工薪階層對“樓市限購令”態(tài)度進行調查,抽調了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調的50名市民中,收入在的有15名,求,的值,并完成頻率分布直方圖(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學期望(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪

6、組的可能性最大?請直接寫出你的判斷結果19(12分)如圖在四邊形中,為中點,.(1)求;(2)若,求面積的最大值.20(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現(xiàn)隨機抽取部分學生的成績,統(tǒng)計結果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624()若測試的同學中,分數(shù)段內女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認為性別與安全意識有關? 是否合格 性別 不合格合格總計男生女生總計()用分層抽樣的方法,從評定等級為“合格”和“不合格”的學

7、生中,共選取人進行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學期望;()某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在()的條件下,判斷該校是否應調整安全教育方案?附表及公式:,其中.21(12分)等差數(shù)列的前項和為,已知,(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,求使成立的的最小值22(10分)在三棱錐S-ABC中,BAC=SBA=SCA=90,SAB=45,SAC=60,D為棱AB的中點,SA=2(I)證明:SDBC;(II)求直線SD與平面SBC所成角的正弦值.參考答案一

8、、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域為,結合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項.【詳解】函數(shù),將函數(shù)的圖象上的所有點的橫坐標縮短到原來的倍,得的圖象;再把所得圖象向上平移個單位,得函數(shù)的圖象,易知函數(shù)的值域為.若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點的橫坐標,的值為函數(shù)的最小正周期的整數(shù)倍,且故選C【點睛】本題考查三角函數(shù)圖象變換,同時也考查了正弦型函

9、數(shù)與周期相關的問題,解題的關鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.2B【解析】判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.3B【解析】利用復數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復數(shù)(i是虛數(shù)單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數(shù)的四則運算以及復數(shù)的幾何意義,屬于基礎題.4A【解析】令xex=t,構造g(x)=xex,要使函數(shù)f(x)=x

10、ex2+axex-a有三個不同的零點x1,x2,x3(其中x1x20,解得a0或a0,a-4兩個情況分類討論,可求出1-x1ex121-x2ex21-x3ex3的值.【詳解】令xex=t,構造g(x)=xex,求導得g(x)=1-xex,當x0;當x1時,g(x)0,故g(x)在-,1上單調遞增,在1,+上單調遞減,且x0時,g(x)0時,g(x)0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x2,x3(其中x1x2x3),則方程t2+at-a=0需要有兩個不同的根t1,t2(其中t10,解得a0或a0,即

11、t1+t2=-a0t1t2=-a0,則t10t21e,則x10 x21x3,且gx2=gx3=t2,故1-x1ex121-x2ex21-x3ex3=1-t121-t22=1-t1+t2+t1t22=1+a-a2=1,若a4t1t2=-a4,由于g(x)max=g(1)=1e,故t1+t22e4,故a-4不符合題意,舍去. 故選A. 【點睛】解決函數(shù)零點問題,常常利用數(shù)形結合、等價轉化等數(shù)學思想.5B【解析】根據(jù)已知得到函數(shù)兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據(jù)圖像變換的知識求得的解析式,再利用三角函數(shù)求單調區(qū)間的方法,求得的單調遞減區(qū)間.【詳解

12、】解:已知函數(shù),其中,其圖像關于直線對稱,對滿足的,有,.再根據(jù)其圖像關于直線對稱,可得,.,.將函數(shù)的圖像向左平移個單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調遞減區(qū)間是,故選B.【點睛】本小題主要考查三角函數(shù)圖像與性質求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調區(qū)間的求法,屬于中檔題.6B【解析】選B.考點:圓心坐標7C【解析】分析:先畫出滿足約束條件對應的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數(shù)求得最大值.詳解:作出不等式組對應的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當過點時,取得最大值

13、9,故選C.點睛:該題考查的是有關線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應用相應的方法求解.8A【解析】先根據(jù)已知求出原ABC的高為AO,再求原ABC的面積.【詳解】由題圖可知原ABC的高為AO,SABCBCOA2,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.9D【解析】根據(jù)空間向量的線性

14、運算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎題.10B【解析】利用復數(shù)的代數(shù)運算法則化簡即可得到結論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,屬于基礎題.11B【解析】由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數(shù)形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,可得,化為

15、,即,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數(shù)形結合思想的應用,屬于綜合題. 數(shù)形結合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數(shù)形結合的思想方法能夠使問題化難為簡,并迎刃而解.12C【解析】套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根

16、據(jù)偶函數(shù)的定義列方程,化簡求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運算求解能力,屬于中檔題.142 40 【解析】(1)由時,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數(shù)的應用,屬于中檔題.1580.【解析】只需找到展開式中的項的系數(shù)即可.【詳解】展開式的通項為,令,則,故的展開式中的系數(shù)為8

17、0.故答案為:80.【點睛】本題考查二項式定理的應用,涉及到展開式中的特殊項系數(shù),考查學生的計算能力,是一道容易題.1691【解析】設共有選票張,且票對應張數(shù)為,由此可構造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【詳解】不妨設共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為故答案為:.【點睛】本題考查線性規(guī)劃的實際應用問題,關鍵是能夠根據(jù)已知條件構造出變量所滿足的關系式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1).(2).【解析】試題分

18、析:()通過討論x的范圍,得到關于x的不等式組,解出取并集即可;()求出f(x)的最大值,得到關于a的不等式,解出即可試題解析:(1)不等式等價于或或,解得或,所以不等式的解集是;(2),解得實數(shù)的取值范圍是點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解法一是運用分類討論思想,法二是運用數(shù)形結合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結合與轉化化歸思想方法的靈活應用,這是命題的新動向18(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大【解析】(1)由頻率和為可知,根據(jù)求得,從而計算得到頻

19、數(shù),補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應的概率,由此得到分布列;根據(jù)數(shù)學期望的計算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即收入在的有名,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;,的分布列為:(3)來自的可能性更大【點睛】本題考查概率與統(tǒng)計部分知識的綜合應用,涉及到頻數(shù)、頻率的計算、頻率分布直方圖的繪制、服從于超幾何分布的隨機變量的分布列與數(shù)學期望的求解、統(tǒng)計估計等知識;考查學生的運算和求解能力.19(1)1;(2)【解析】(1

20、),在和中分別運用余弦定理可表示出,運用算兩次的思想即可求得,進而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值【詳解】(1)由題設,則在和中由余弦定理得:,即解得,(2)在中由余弦定理得,即,所以面積的最大值為,此時.【點睛】本題主要考查余弦定理在解三角形中的應用,以及三角形面積公式的應用,意在考查學生的數(shù)學運算能力,屬于中檔題20()詳見解析;()詳見解析;()不需要調整安全教育方案.【解析】(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(II)利用

21、超幾何分布的計算公式,計算出的分布列并求得數(shù)學期望.(III)由(II)中數(shù)據(jù),計算出,進而求得的值,從而得出該校的安全教育活動是有效的,不需要調整安全教育方案.【詳解】解:()由頻率分布直方圖可知,得分在的頻率為,故抽取的學生答卷總數(shù)為,.性別與合格情況的列聯(lián)表為: 是否合格 性別 不合格合格小計男生女生小計即在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.()“不合格”和“合格”的人數(shù)比例為,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值為, .的分布列為:20151050所以. ()由()知: .故我們認為該校的安全教育活動是有效的,不需要調整安全教育方案.【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查超幾何分布

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論