人教版九年級(jí)(上冊(cè))數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)歸納與練習(xí)1_第1頁(yè)
人教版九年級(jí)(上冊(cè))數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)歸納與練習(xí)1_第2頁(yè)
人教版九年級(jí)(上冊(cè))數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)歸納與練習(xí)1_第3頁(yè)
人教版九年級(jí)(上冊(cè))數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)歸納與練習(xí)1_第4頁(yè)
人教版九年級(jí)(上冊(cè))數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)歸納與練習(xí)1_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、. .PAGE8 / NUMPAGES8二次函數(shù) 一、二次函數(shù)概念:1二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。 這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零二次函數(shù)的定義域是全體實(shí)數(shù)2. 二次函數(shù)的結(jié)構(gòu)特征: 等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng)二、二次函數(shù)的基本形式1. 二次函數(shù)基本形式:的性質(zhì):a 的絕對(duì)值越大,拋物線的開口越小。的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減?。粫r(shí),有最小值向下軸時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值2. 的性質(zhì):上加

2、下減。的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減??;時(shí),有最小值向下軸時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值3. 的性質(zhì):左加右減。的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上X=h時(shí),隨的增大而增大;時(shí),隨的增大而減小;時(shí),有最小值向下X=h時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值4. 的性質(zhì):的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上X=h時(shí),隨的增大而增大;時(shí),隨的增大而減??;時(shí),有最小值向下X=h時(shí),隨的增大而減小;時(shí),隨的增大而增大;時(shí),有最大值三、二次函數(shù)圖象的平移 1. 平移步驟:方法一: 將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式,確定其頂點(diǎn)坐標(biāo);

3、保持拋物線的形狀不變,將其頂點(diǎn)平移到處,具體平移方法如下: 2. 平移規(guī)律 在原有函數(shù)的基礎(chǔ)上“值正右移,負(fù)左移;值正上移,負(fù)下移”概括成八個(gè)字“左加右減,上加下減”方法二:沿軸平移:向上(下)平移個(gè)單位,變成(或)沿軸平移:向左(右)平移個(gè)單位,變成(或)四、二次函數(shù)與的比較從解析式上看,與是兩種不同的表達(dá)形式,后者通過(guò)配方可以得到前者,即,其中五、二次函數(shù)圖象的畫法五點(diǎn)繪圖法:利用配方法將二次函數(shù)化為頂點(diǎn)式,確定其開口方向、對(duì)稱軸與頂點(diǎn)坐標(biāo),然后在對(duì)稱軸兩側(cè),左右對(duì)稱地描點(diǎn)畫圖.一般我們選取的五點(diǎn)為:頂點(diǎn)、與軸的交點(diǎn)、以與關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)、與軸的交點(diǎn),(若與軸沒(méi)有交點(diǎn),則取兩組關(guān)于對(duì)稱軸

4、對(duì)稱的點(diǎn)).畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對(duì)稱軸,頂點(diǎn),與軸的交點(diǎn),與軸的交點(diǎn).六、二次函數(shù)的性質(zhì) 1.當(dāng)時(shí),拋物線開口向上,對(duì)稱軸為,頂點(diǎn)坐標(biāo)為當(dāng)時(shí),隨的增大而減?。划?dāng)時(shí),隨的增大而增大;當(dāng)時(shí),有最小值 2. 當(dāng)時(shí),拋物線開口向下,對(duì)稱軸為,頂點(diǎn)坐標(biāo)為當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí),隨的增大而減?。划?dāng)時(shí),有最大值七、二次函數(shù)解析式的表示方法1. 一般式:(,為常數(shù),);2. 頂點(diǎn)式:(,為常數(shù),);3. 兩根式:(,是拋物線與軸兩交點(diǎn)的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與軸有交點(diǎn),即時(shí),拋物線的解析式才可以用交點(diǎn)式表

5、示二次函數(shù)解析式的這三種形式可以互化.八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系 1.二次項(xiàng)系數(shù)二次函數(shù)中,作為二次項(xiàng)系數(shù),顯然 當(dāng)時(shí),拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大; 當(dāng)時(shí),拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大總結(jié)起來(lái),決定了拋物線開口的大小和方向,的正負(fù)決定開口方向,的大小決定開口的大小2. 一次項(xiàng)系數(shù) 在二次項(xiàng)系數(shù)確定的前提下,決定了拋物線的對(duì)稱軸 在的前提下,當(dāng)時(shí),即拋物線的對(duì)稱軸在軸左側(cè);當(dāng)時(shí),即拋物線的對(duì)稱軸就是軸;當(dāng)時(shí),即拋物線對(duì)稱軸在軸的右側(cè) 在的前提下,結(jié)論剛好與上述相反,即當(dāng)時(shí),即拋物線的對(duì)稱軸在軸右側(cè);當(dāng)時(shí),即拋物線的對(duì)稱軸就

6、是軸;當(dāng)時(shí),即拋物線對(duì)稱軸在軸的左側(cè)總結(jié)起來(lái),在確定的前提下,決定了拋物線對(duì)稱軸的位置的符號(hào)的判定:對(duì)稱軸在軸左邊則,在軸的右側(cè)則,概括的說(shuō)就是“左同右異”總結(jié): 3. 常數(shù)項(xiàng) 當(dāng)時(shí),拋物線與軸的交點(diǎn)在軸上方,即拋物線與軸交點(diǎn)的縱坐標(biāo)為正; 當(dāng)時(shí),拋物線與軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與軸交點(diǎn)的縱坐標(biāo)為; 當(dāng)時(shí),拋物線與軸的交點(diǎn)在軸下方,即拋物線與軸交點(diǎn)的縱坐標(biāo)為負(fù) 總結(jié)起來(lái),決定了拋物線與軸交點(diǎn)的位置 總之,只要都確定,那么這條拋物線就是唯一確定的二次函數(shù)解析式的確定:根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问?,才能使解題

7、簡(jiǎn)便一般來(lái)說(shuō),有如下幾種情況:1. 已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;2. 已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;3. 已知拋物線與軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;4. 已知拋物線上縱坐標(biāo)一樣的兩點(diǎn),常選用頂點(diǎn)式九、二次函數(shù)圖象的對(duì)稱 二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá) 1. 關(guān)于軸對(duì)稱關(guān)于軸對(duì)稱后,得到的解析式是; 關(guān)于軸對(duì)稱后,得到的解析式是; 2. 關(guān)于軸對(duì)稱關(guān)于軸對(duì)稱后,得到的解析式是; 關(guān)于軸對(duì)稱后,得到的解析式是; 3. 關(guān)于原點(diǎn)對(duì)稱關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是;關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是; 4. 關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞

8、頂點(diǎn)旋轉(zhuǎn)180)關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是;關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是 5. 關(guān)于點(diǎn)對(duì)稱 關(guān)于點(diǎn)對(duì)稱后,得到的解析式是 根據(jù)對(duì)稱的性質(zhì),顯然無(wú)論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此永遠(yuǎn)不變求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)與開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)與開口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式十、二次函數(shù)與一元二次方程:1. 二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與軸交點(diǎn)情況):一元二次方程是二次函數(shù)當(dāng)函數(shù)值時(shí)的特殊情況.圖象與軸的交點(diǎn)個(gè)數(shù): 當(dāng)時(shí),圖象與軸交于兩

9、點(diǎn),其中的是一元二次方程的兩根這兩點(diǎn)間的距離. 當(dāng)時(shí),圖象與軸只有一個(gè)交點(diǎn); 當(dāng)時(shí),圖象與軸沒(méi)有交點(diǎn).當(dāng)時(shí),圖象落在軸的上方,無(wú)論為任何實(shí)數(shù),都有;當(dāng)時(shí),圖象落在軸的下方,無(wú)論為任何實(shí)數(shù),都有 2. 拋物線的圖象與軸一定相交,交點(diǎn)坐標(biāo)為,; 3. 二次函數(shù)常用解題方法總結(jié): 求二次函數(shù)的圖象與軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程; 求二次函數(shù)的最大(?。┲敌枰门浞椒▽⒍魏瘮?shù)由一般式轉(zhuǎn)化為頂點(diǎn)式; 根據(jù)圖象的位置判斷二次函數(shù)中,的符號(hào),或由二次函數(shù)中,的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合; 二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱

10、性求出另一個(gè)交點(diǎn)坐標(biāo). 與二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式本身就是所含字母的二次函數(shù);下面以時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的在聯(lián)系:拋物線與軸有兩個(gè)交點(diǎn)二次三項(xiàng)式的值可正、可零、可負(fù)一元二次方程有兩個(gè)不相等實(shí)根拋物線與軸只有一個(gè)交點(diǎn)二次三項(xiàng)式的值為非負(fù)一元二次方程有兩個(gè)相等的實(shí)數(shù)根拋物線與軸無(wú)交點(diǎn)二次三項(xiàng)式的值恒為正一元二次方程無(wú)實(shí)數(shù)根.十一、函數(shù)的應(yīng)用二次函數(shù)應(yīng)用練習(xí)一、選擇題1. 二次函數(shù)的頂點(diǎn)坐標(biāo)是( )A.(2,11) B.(2,7) C.(2,11) D. (2,3)2. 把拋物線向上平移1個(gè)單位,得到的拋物線是( )A. B. C. D.3.函數(shù)和在同一

11、直角坐標(biāo)系中圖象可能是圖中的( )4.已知二次函數(shù)的圖象如圖所示,則下列結(jié)論: a,b同號(hào);當(dāng)和時(shí),函數(shù)值相等;當(dāng)時(shí),的值只能取0.其中正確的個(gè)數(shù)是( ) A.1個(gè) B.2個(gè) C. 3個(gè) D. 4個(gè)5.已知二次函數(shù)的頂點(diǎn)坐標(biāo)(-1,-3.2)與部分圖象(如圖),由圖象可知關(guān)于的一元二次方程的兩個(gè)根分別是(). B.-2.3 C.-0.3 D.-3.36. 已知二次函數(shù)的圖象如圖所示,則點(diǎn)在()A第一象限B第二象限C第三象限 D第四象限7.方程的正根的個(gè)數(shù)為( )A.0個(gè) B.1個(gè) C.2個(gè). 3 個(gè)8.已知拋物線過(guò)點(diǎn)A(2,0),B(-1,0),與軸交于點(diǎn)C,且OC=2.則這條拋物線的解析式為

12、A. B.C.或 D.或二、填空題9二次函數(shù)的對(duì)稱軸是,則_。10已知拋物線y=-2(x+3)+5,如果y隨x的增大而減小,那么x的取值圍是_.11一個(gè)函數(shù)具有下列性質(zhì):圖象過(guò)點(diǎn)(1,2),當(dāng)0時(shí),函數(shù)值隨自變量的增大而增大;滿足上述兩條性質(zhì)的函數(shù)的解析式是(只寫一個(gè)即可)。12拋物線的頂點(diǎn)為C,已知直線過(guò)點(diǎn)C,則這條直線與兩坐標(biāo)軸所圍成的三角形面積為。13. 二次函數(shù)的圖象是由的圖象向左平移1個(gè)單位,再向下平移2個(gè)單位得到的,則b= ,c=。14如圖,一橋拱呈拋物線狀,橋的最大高度是16米,跨度是40米,在線段AB上離中心M處5米的地方,橋的高度是(取3.14).三、解答題:第15題圖15.

13、已知二次函數(shù)圖象的對(duì)稱軸是,圖象經(jīng)過(guò)(1,-6),且與軸的交點(diǎn)為(0,).(1)求這個(gè)二次函數(shù)的解析式;(2)當(dāng)x為何值時(shí),這個(gè)函數(shù)的函數(shù)值為0?(3)當(dāng)x在什么圍變化時(shí),這個(gè)函數(shù)的函數(shù)值隨x的增大而增大?16.某種爆竹點(diǎn)燃后,其上升高度h(米)和時(shí)間t(秒)符合關(guān)系式 (0t2),其中重力加速度g以10米/秒2計(jì)算這種爆竹點(diǎn)燃后以v0=20米/秒的初速度上升,(1)這種爆竹在地面上點(diǎn)燃后,經(jīng)過(guò)多少時(shí)間離地15米?(2)在爆竹點(diǎn)燃后的1.5秒至1.8秒這段時(shí)間,判斷爆竹是上升,或是下降,并說(shuō)明理由.17.如圖,拋物線經(jīng)過(guò)直線與坐標(biāo)軸的兩個(gè)交點(diǎn)A、B,此拋物線與軸的另一個(gè)交點(diǎn)為C,拋物線頂點(diǎn)為D.(1)求此拋物線的解析式;(2)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),求使:5 :4的點(diǎn)P的坐標(biāo)。18. 紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費(fèi)提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理)當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸該建材店為提高經(jīng)營(yíng)利潤(rùn),準(zhǔn)備采取降價(jià)的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論