版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、一、單選題1、若的內(nèi)角所對的邊滿足,且,則 的值為()AB1CD2、若ABC的內(nèi)角A、B、C所對的邊a、b、c滿足,且=60°,則 的值為( )A B1 C D3、在中,已知,則角為 ( )ABCD或4、某人先朝正東方向走了km,再朝西偏北的方向走了3km,結(jié)果它離出發(fā)點恰好為km,那么等于 ( )A
2、 B C3 D或5、若的三角,則A、B、C分別所對邊=( )A B C D6、在ABC中,若,則此三角形是
3、160; ( ) A正三角形B銳角三角形C直角三角形D鈍角三角形7、在中,若,則的形狀一定是( )A銳角三角形B鈍角三角形C直角三角形D等腰三角形8、在中, ( )AB或CD或9、ABC的內(nèi)角A,B,C的對邊分別為
4、a,b,c,已知b=2,B=,C=,則ABC的面積為()A2+2B+1C2-2D-110、符合下列條件的三角形有且只有一個的是( )Aa=1, b="2" , c=3Ba=1, b=2,A=100°Ca=1, b=, A=30°Db="c=1," B=45°11、在中,面積,則ABCD12、的內(nèi)角A、B、C的對邊分別為a、b、c,若a、b、c成等比數(shù)列,且,則( ). A. B
5、. C. D. 13、在中,角所對的邊分別為,若,則的面積等于( )A10BC20D14、在ABC中,(a,b, c分別為角A、B、C的對邊),則ABC的形狀為A正三角形 B直角三角形 C等腰三角形
6、; D等腰三角形或直角三角形15、在中,若,則等于( )ABCD16、在中,若,則是 ( )A等腰三角形B直角三角形C等邊三角形D等腰直角三角形17、(本小題考查 正弦定理)在三角形ABC中,則B等于A或 B. C.
7、60; D. 以上答案都不對。18、在ABC中,三個內(nèi)角分別是A,B,C,若sinC=2cosAsinB。則此ABC一定是( )A直角三角形 B.正三角形 C。等腰三角形 D.等腰直角三角形19、在中,角的對邊長分別為,若,則的形狀為A直角三角形B等腰三角形C等邊三角形D等腰直角三角形20、已知,
8、角、所對應(yīng)的邊分別為,滿足,則是( )A銳角三角形B直角三角形C鈍角三角形D等腰直角三角形二、解答題21、(本小題滿分12分)已知、分別是的三個內(nèi)角、所對的邊(1)若面積求、的值;(2)若,且,試判斷的形狀22、沿一條小路前進(jìn),從A到B,方位角(從正北方向順時針轉(zhuǎn)到AB方向所成的角)是50°,距離是3 km,從B到C,方位角是110°,距離是3 km,從C到D,方位角是140°,距離是(9+3)km.試畫出示意圖,并計算出從A到D的方位角和距離(結(jié)果保留根號).23、第四屆中國國際航空航天博覽會于2010年11月在珠海舉行,一次飛
9、行表演中,一架直升飛機(jī)在海拔800m的高度飛行,從空中A處測出前下方海島兩側(cè)海岸P、Q處的俯角分別是45°和30°(如右圖所示). (1)試計算這個海島的寬度.(2)若兩觀測者甲、乙分別在海島兩側(cè)海岸P、Q處同時測得飛機(jī)的仰角為45°和30°,他們估計P、Q兩處距離大約為600m,由此試估算出觀測者甲(在P處)到飛機(jī)的直線距離.24、在ABC中,a,b,c分別為角A,B,C所對的邊,a,b,c成等差數(shù)列,且a=2c。(1)求cosA的值;(2)若ABC面積為,求b的值25、在社會實踐中,小明觀察一棵桃樹。他在點A處發(fā)現(xiàn)桃樹頂端點C的仰角大小為,往正前方走
10、4米后,在點B處發(fā)現(xiàn)桃樹頂端點C的仰角大小為.(I) 求BC的長;(II) 若小明身高為1.70米,求這棵桃樹頂端點C離地面的高度(精確到0.01米,其中).26、(本小題滿分12分)已知的內(nèi)角所對的邊分別為且.()若, 求的值;()若的面積 求的值.27、已知、為的三個內(nèi)角,且其對邊分別為、,若(1)求;(2)若,求的面積28、在銳角中,、分別為角、所對的邊,且(1)確定角的大?。?(2)若,且的面積為,求的值29、(本小題滿分10分)已知海島B在海島A的北偏東45°方向上,A、B相距10海里,小船甲從海島B以2海里/小時的速度沿直線向海島A移動,同時小船乙從海島A出發(fā)沿
11、北偏15°方向也以2海里/小時的速度移動。()經(jīng)過1小時后,甲、乙兩小船相距多少海里?()在航行過程中,小船甲是否可能處于小船乙的正東方向?若可能,請求出所需時間,若不可能,請說明理由。30、中,角A,B,C的對邊分別是且滿足(1)求角B的大??;(2)若的面積為為且,求的值;xxxx - xxxx學(xué)年度xx學(xué)校xx月考答案及解析1、【答案】C【解析】試題分析:由余弦定理知: ,又 ,消去 得: . 2、【答案】C【解析】試題分析:由得:,故由余弦定理知:,解得,故選C. 3、【答案】A【解析】試題分析:因為,所以,根據(jù)余弦定理有:,所以角為.點
12、評:正弦定理和余弦定理是兩個比較重要的定理,要重點掌握,靈活應(yīng)用. 4、【答案】D【解析】試題分析:作出圖象,三點之間正好組成了一個知兩邊與一角的三角形,由余弦定理建立關(guān)于x的方程即可求得x的值則設(shè)AB=x,BC=3, 故可知答案為D點評:考查解三角形的知識,其特點從應(yīng)用題中抽象出三角形根據(jù)數(shù)據(jù)特點選擇合適的定理建立方程求解 5、【答案】C【解析】試題分析:由及得,再由正弦定理得。 6、【答案】D【解析】略 7、【答案】D【解析】試題分析:在ABC中,acosB=bcosA,又由正弦定理可得 =,sinAcosB-cosAsinB=0,sin(
13、A-B)=0由-A-B 得,A-B=0,故ABC為等腰三角形,故選D點評:解決該試題的關(guān)鍵是利用邊化角的思想得到sin(A-B)=0,并能利用角的范圍,確定出A,B的關(guān)系式。 8、【答案】D【解析】因為由正弦定理可知,故A有兩個解,選D 9、【答案】B【解析】由正弦定理知c=2.又sinA=sin(-B-C)=sin(B+C)=sinBcosC+cosBsinC=,所以ABC的面積S=bcsin A=+1.故選B. 10、【答案】D【解析】試題分析:不滿足兩邊之和大于第三邊.;大邊對大角,錯誤;由正弦定理可知,可得或. 故選D. 11、【答案】B【解析】
14、解:因為在中,面積選B 12、【答案】A【解析】因為解:a,b,c,且a,b,c成等比數(shù)列且c=2ab2=ac=2a2,b=a,c=2a由余弦定理可知cosB=故答案為: A 13、【答案】B【解析】試題分析:由余弦定理得,. 14、【答案】B【解析】試題分析:利用二倍角的余弦函數(shù)公式化簡已知等式的左邊,整理后表示出cosA,再利用余弦定理表示出cosA,兩者相等,整理后得到a2+b2=c2,根據(jù)勾股定理的逆定理即可判斷出此三角形為直角三角形。因為,那么可知 可知答案為B.點評:此題考查了三角形形狀的判斷,考查二倍角的余弦函數(shù)公式,余弦定理,以及勾股定理
15、的逆定理;熟練掌握公式及定理是解本題的關(guān)鍵 15、【答案】D【解析】解:因為選D 16、【答案】A【解析】由得,則,即,所以,則,即,又是的內(nèi)角,所以,則,即,所以是等腰三角形。故選A。 17、【答案】C【解析】略 18、【答案】C【解析】略 19、【答案】B【解析】試題分析:根據(jù)正弦定理,角的對邊長分別為,若,展開得到故可知等腰三角形,故選B點評:本題考查正弦定理、三角形的內(nèi)角和、兩角和的正弦函數(shù)的應(yīng)用,考查計算能力 20、【答案】B【解析】因為所以 21、【答案】(1),(2)是等腰直角三角形【解析】試題分析:解:(1)
16、,得由余弦定理得:,所以(2)由余弦定理得:,所以在中,所以 所以是等腰直角三角形;點評:解決的關(guān)鍵是對于三角形的面積公式與正弦定理和余弦定理的靈活運用。屬于基礎(chǔ)題。 22、【答案】從A到D的方位角是125°,距離為km.【解析】示意圖如圖所示, 3分連接AC,在ABC中,ABC=50°+(180°-110°)=
17、120°,又AB=BC=3,BAC=BCA=30°. 5分由余弦定理可得AC= =3(km).
18、0; 8分在ACD中,ACD=360°-140°-(70°+30°)=120°,CD=3+9.由余弦定理得AD= =(km).
19、60; 10分由正弦定理得sinCAD=.
20、0; 12分CAD=45°,于是AD的方位角為50°+30°+45°=125°,所以,從A到D的方位角是125°,距離為km.
21、0; 14分 23、【答案】解:(1)在中,則. (3分)在中,則. (5分)所以,(m). (7分)(2)在中,. (8分)根據(jù)正弦定理,得,(10分)則.(14分)【解析】 24、【答案】(1);(2)b=3【解析】試題分析:因為a,b,c成等差數(shù)列,所以2b
22、=a+c,又a=2c,所以b=.(1)=;(2)因為ABC面積為,即,所以b=3.點評:中檔題,本題綜合考查余弦定理的應(yīng)用,三角形面積公式,等差數(shù)列等基礎(chǔ)知識,對計算能力有較好考查。 25、【答案】解: ( I )在中, 則 由正弦定理得到, , 將AB=4代入上式, 得到 (米) ( II ) 在中, , ,所以 因為, 得到, 則 , 所以 &
23、#160; (米) 答:BC的長為米;桃樹頂端點C離地面的高度為7.16米?!窘馕觥?#160;26、【答案】【解析】 27、【答案】() ()【解析】試題分析:() 2分又, 6分()由余弦定理得 &
24、#160; 8分即:, 10分 12分點評:正、余弦定理是解斜三解形強(qiáng)有力的工具,在求解三角形的時候,問題涉及三角形的若干幾何量,解題時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中藥在治療老年癡呆癥中的應(yīng)用
- 2024幼兒園教師績效考核與薪酬福利合同范本3篇
- 2024年租車合同簡易模板
- 2024年私人借款協(xié)議文本
- 2024年版汽車買賣交易具體合同版
- 2024年航空航天基地建設(shè)爆破鉆孔合同
- 2024年西歐跨國租賃合同
- 2024年項目股權(quán)轉(zhuǎn)讓協(xié)議3篇
- 2024年版股權(quán)轉(zhuǎn)讓合同:包含股權(quán)比例、轉(zhuǎn)讓價格及違約責(zé)任
- 2024年福建地區(qū)二手房交易協(xié)議標(biāo)準(zhǔn)文本版
- TSG 51-2023 起重機(jī)械安全技術(shù)規(guī)程 含2024年第1號修改單
- 《正態(tài)分布理論及其應(yīng)用研究》4200字(論文)
- GB/T 45086.1-2024車載定位系統(tǒng)技術(shù)要求及試驗方法第1部分:衛(wèi)星定位
- 1古詩文理解性默寫(教師卷)
- 廣東省廣州市越秀區(qū)2021-2022學(xué)年九年級上學(xué)期期末道德與法治試題(含答案)
- 2024-2025學(xué)年六上科學(xué)期末綜合檢測卷(含答案)
- 在線教育平臺合作合同助力教育公平
- 工地鋼板短期出租合同模板
- 女排精神課件教學(xué)課件
- 2024年湖南省公務(wù)員考試《行測》真題及答案解析
- 超市消防安全巡查制度
評論
0/150
提交評論