第一講交叉點(diǎn)的計(jì)算_第1頁
第一講交叉點(diǎn)的計(jì)算_第2頁
第一講交叉點(diǎn)的計(jì)算_第3頁
第一講交叉點(diǎn)的計(jì)算_第4頁
第一講交叉點(diǎn)的計(jì)算_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、H T VHtot(r,R) TN TeVeeVeNVNN12M212mei2i1rijjiiZriiZZR TN He(r;R)Nuc-nuc repulsionel-nuc attractionel-el repulsionNuc kinetic EnElectr. kinetic En(TN EIe)I ETIT(r,R) I(R)Ie(r;R)HT TN He12M2 He(r;R)HeIe EIeIeHTT ETT are facilitated by the close proximity of potential energy surfaces. When the potenti

2、al energy surfaces approach each other the BO approximation breaks down. The rate for nonadiabatic transitions depends on the energy gap.T(r,R) I(R)Ie(r;R)I1NaHeIe EIeIe(TN1KII EIe)I12(2fIJJ KIJJINJ) ETIfIJ(R) IeJerkIJ(R) Ie2JerWhen electronic states approach each other, more than one of them should

3、 be included in the expansionfIJ I JIH JEJ EIfIJ fJIfII 0I2J fIJ fIJfIJTwo adiabatic potential energy surfaces cross. The interstate coupling is large facilitating fast radiationless transitions between the surfaces1 c111 c2122 c121 c222HeH11H12H21H22HijiHejH H11 H221 cos21 sin222 sin21 cos22sin2H12

4、H2H122cos2H11 H22H2H122iE1,2H11 H22H2 H1222H11(R)=H22 (R)H12 (R) =0Since two conditions are needed for the existence of a conical intersection the dimensionality is Nint-2, where Nint is the number of internal coordinates For diatomic molecules there is only one internal coordinate and so states of

5、the same symmetry cannot cross (noncrossing rule). But polyatomic molecules have more internal coordinates and states of the same symmetry can cross.J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)HeH11H12H21H22QyQxQsRrNint-2 coordinates form the seam: points of conicalintersections are connected

6、continuouslyhgETwo internal coordinates lift the degeneracy linearly:g-h or branching plane Figure 1b2.933.13.23.33.4r (a.u.)-0.6-0.4-0.200.20.40.6x (a.u.)-3-2-10123E (eV)Figure 4a -0.2-0.100.10.2x (bohr)-0.2-0.100.10.2y (bohr)-0.015-0.01-0.00500.0050.010.015energy (a.u.)H(R) H(R0) H(R0)RH(R) 0 H(R0

7、)RH12(R) 0 H12(R0)RH(R0)R 0H12(R0)R 0g Hh H12He (sxx syy)IgxhyhygxE1,2 sxx syy (gx)2 (hy)2Conical intersections are described in terms of the characteristic parameters g,h,sasymmetrytiltE E0 sxx syyg2x2 h2y21 cos21 sin222 sin21 cos221( 2) 1()2( 2) 2()T eiA(R)(R;r)(R)gIJ(R)= gI(R) - gJ(R)hIJ(R) cI(Rx

8、)H(R)RcJ(Rx)gI(R) cI(Rx)H(R)RcI(Rx)IecmImm1NCSFHe(R) EI(R)cI(R) 0Locating the minimum energy point on the seam of conical intersectionsLocate conical intersections using lagrange multipliers:Eij gjiR 0hjiR 0Additional geometrical constrains, Ki, , can be imposed. These conditions can be imposed by f

9、inding an extremum of the Lagrangian. L (R, , )= Ek + 1Eij+ 2Hij + iKi-2-10123456-4-3-2-101234Y(a0)X(a0)-2-10123456-4-3-2-101234Y(a0)X(a0)hgEFigure 4a -0.2-0.100.10.2x (bohr)-0.2-0.100.10.2y (bohr)-0.015-0.01-0.00500.0050.010.015energy (a.u.)Reaction to H2O+OQuenching to OH(X)+OH(X)OH(A)+OH(X)Three-

10、state conical intersectionsH11(R)=H22 (R)= H33H12 (R) = H13 (R) = H23 (R) =0 Nint-5, where Nint is the number of internal coordinates J. von Neumann and E. Wigner, Phys.Z 30,467 (1929)H H11H12H13H12H22H23H13H23H33H11H120H1T2H12*H22H1T20H11H12*H12H22C.A.Mead J.Chem.Phys., 70, 2276, (1979)1 2 T1 T2 kqEEX)(12111XXkT #p cas(6,6,slaterdet)/6-31G* opt=conical

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論