(參考答案)福州市年高中畢業(yè)班綜合質(zhì)量檢測(cè)數(shù)學(xué)_第1頁(yè)
(參考答案)福州市年高中畢業(yè)班綜合質(zhì)量檢測(cè)數(shù)學(xué)_第2頁(yè)
(參考答案)福州市年高中畢業(yè)班綜合質(zhì)量檢測(cè)數(shù)學(xué)_第3頁(yè)
(參考答案)福州市年高中畢業(yè)班綜合質(zhì)量檢測(cè)數(shù)學(xué)_第4頁(yè)
(參考答案)福州市年高中畢業(yè)班綜合質(zhì)量檢測(cè)數(shù)學(xué)_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021 年 3 月福州市高中畢業(yè)班質(zhì)量檢測(cè)評(píng)分說(shuō)明:1本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)那么。2對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼局部的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼局部的給分,但不得超過(guò)該局部正確解容許給分?jǐn)?shù)的一半;如果后繼局部的解答有較嚴(yán)重的錯(cuò)誤,就不再給分。3解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。4只給整數(shù)分?jǐn)?shù)。一、單項(xiàng)選擇題:此題共 8 小題,每題5 分,共 40 分1C2B3B4A5D6C7D8C二、多項(xiàng)選擇題:此題共 4 小題,每題5 分,共 20

2、 分9AC10ABD11BCD12BCD三、填空題:本大題共 4 小題,每題5 分,共 20 分13-2,414515251612四、解答題:本大題共 6 小題,共 70 分17. 本小題總分值10分【命題意圖】本小題主要考查等比數(shù)列、 an 與 Sn 的關(guān)系、數(shù)列求和等根底知識(shí);考查推理論證能力、運(yùn)算求解能力;考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想;考查邏輯推理、數(shù)學(xué)運(yùn)算等核心素養(yǎng),表達(dá)根底性、綜合性總分值10 分【解答】1選,即 Sn=2an+1那么當(dāng)n =1時(shí),S1 =2a1 +1,故a1 =-1;········

3、;···············································1 分當(dāng)n2時(shí),Sn-1=2an-

4、1+1,兩式相減得an=2an-1,···············································

5、·············3 分所以an為等比數(shù)列,其中公比為2,首項(xiàng)為-1·································

6、;····4 分所以an =-2n-1···········································

7、83;······································5 分選,即a1=-1,log2(anan+1)=2n-1所以當(dāng)n2時(shí),log2(anan+1)-log2(an-1an)=2,·

8、;······································1 分即 an+1 = 4,·········

9、83;·················································

10、83;···························2 分an-1所以a2k-1k ÎN* 為等比數(shù)列,其中首項(xiàng)為 a =-1 ,公比為 4,12k -1所以a=-1´ 4k -1 =-2(2k-1)-1 ········

11、··················································

12、····3 分由a1=-1,log2(a1a2)=1,得a2=-2,n2k同理可得,a=-2´4k-1=-22k-1kÎN*··································

13、3;·········4 分綜上,a =-2n-1······································&#

14、183;········································5 分選,即a2 =aa,S =-3,a =-4n+1n n+223所以an為等比數(shù)列,設(shè)其公比為q,·

15、;··················································

16、;·1 分ìïa(1+q)=-3,ìa =-1,ìa1 =-9 ,那么í1ïa q2 =-4 ,解得1q = 2,ïíq =-2 .·······························

17、83;···········3 分î1îïî3í或又因?yàn)閍 為單調(diào)數(shù)列,所以 q 0 ,故ìa1 =-1,·····4 分îníq = 2 ,··················&

18、#183;·············n所以a =-2n-1··································&#

19、183;···············································5 分n2由1知, -na

20、=n × 2n-1 ,所以Tn=1+2´2+3´22+(n-1)×2n-2+n×2n-1, ···································· 6分2Tn =2+2&#

21、180;22+(n-2)×2n-2+(n-1)×2n-1+n×2n, ······················7 分兩式相減得-Tn=1+2+22+2n-2+2n-1-n×2n·············&#

22、183;··························8 分=(2n-1)-n×2n····················

23、········································9 分所以Tn=(n-1)×2n+1 ······

24、··················································

25、···············10 分18. 本小題總分值12分【命題意圖】本小題主要考查解三角形等根底知識(shí);考查推理論證能力、運(yùn)算求解能力; 考查函數(shù)與方程思想、數(shù)形結(jié)合思想;考查直觀想象、邏輯推理、數(shù)學(xué)運(yùn)算等核心素養(yǎng),表達(dá)根底性、綜合性總分值12 分【解答】解法一:1因?yàn)?a+b=ccosB-bcosC,由正弦定理得sinA+sinB=sinCcosB-sinBcosC,······

26、····························· 2分因?yàn)閟in(B+C)=sin(-A)=sinA,所以sin(B+C)+sinB= sinCcosB-sinBcosC,··········

27、3;······························3 分所以2sinBcosC+sinB=0,················

28、··················································

29、 4分因?yàn)锽Î(0,),所以sinB ¹0,所以cosC=-1,······································5 分2又CÎ(0,),所以C=2.·&

30、#183;·················································&

31、#183;················ 6分32因?yàn)镃D 是ABC 的角平分線,且C =2 ,3所以ÐACD=ÐBCD =························

32、83;···················7 分3在ABC 中, S ABC =S ACD +SBCD ,那么由面積公式得1CA×CBsin2=1CA×CDsin+1CD×CBsin, ················

33、···················· 10分232323即CA×CB=CA×CD+CD×CB.······················

34、3;········································11分兩邊同時(shí)除以CA×CB×CD得1 +1 =1 .···

35、83;········································12 分CACBCD解法二:1因?yàn)?a+b=ccosB-bcosC,a2 +c2-b2a2 +b2 -c2由余弦定

36、理得a+b=c×-b×,··································· 2分2ac2ab整理得2a(a+b)=2c2 -2b2,即a2 +b2 -c2 +ab=0,···

37、83;····························· 3分所以ab(1+2cosC)=0,·················&#

38、183;·················································&#

39、183;···4 分所以cosC=-1,············································&

40、#183;···································5 分2又CÎ(0,),所以C=2.··········&#

41、183;·················································&#

42、183;······· 6分32因?yàn)镃D 是ABC 的角平分線,且C =2 ,3所以ÐACD=ÐBCD =·································

43、3;········7 分3在ABC 中,由正弦定理得CAsinB=CB =sin AABsin 23, ··································

44、83;···········8 分即 CAsinB=CB =sin AADsin + DBsin ································

45、3;·····························9 分33同理在CAD 和CBD 中,得CD =sin AADsin 3, CDsinB=DB ,sin 3所以 CAsin B=CD +sin ACDsinB,即 CA-CD=sin BCDsinA, ···

46、3;···································10 分故CA-CD=CD,即1=CD+CD,···········

47、;··········································11分CACBCBCA故 1 +1 =1 ····&#

48、183;·················································&#

49、183;·····················12 分CACBCD19. 本小題總分值12分【命題意圖】本小題主要考查空間直線與直線、直線與平面、平面與平面的位置關(guān)系等根底知識(shí);考查推理論證能力、運(yùn)算求解能力與空間想象能力;考查數(shù)形結(jié)合思想;考查直觀想象、邏輯推理、數(shù)學(xué)運(yùn)算等核心素養(yǎng),表達(dá)根底性、綜合性總分值12 分【解答】1依題意,四邊形 ACC1A1為等腰梯形,過(guò) A1,C1分別

50、引 AC的垂線,垂足分別為 D,E,那么AD =1 (AC -A C )=1 ´(2 - 1)=1 =1 AA ,故ÐA AC = 60°21 122211在ACA 中, A C2 =A A2 +AC2 - 2A A ×AC cos ÐA AC = 12 + 22 - 2 ´1´ 2 ´1 = 3 ,111112所以AC2+AA2 =AC2,故ÐAAC=90°,即ACAA··········

51、83;·················2 分11111因?yàn)锳1CAB,ABAA1=A,且AB,AA1Ì平面ABB1A1,所以A1C平面ABB1A1,······················

52、83;···············································4 分因?yàn)锳1CÌ平

53、面ACC1A1 ,所以平面ACC1A1 平面ABB1A1·············································&#

54、183;·············5 分A1C = C2因?yàn)锳BAC,A1CAB,AC,且AC,A1CÌ平面ACC1A1,所以AB平面ACC1A1,結(jié)合1可知AB,AC,A1D三條直線兩兩垂直·····6 分以A為原點(diǎn),分別以AB,AC,DA1的方向?yàn)閤,y,z軸的正方向,建立空間直角坐標(biāo)系A(chǔ) -xyz ,如下圖,那么各點(diǎn)坐標(biāo)為 3A(0,0,0),B(1,0,0),C(0,2,0),æ1

55、6;,A1 ç0,÷è22 ø3æ3ö ·········································

56、3;··········7 分C1ç0,÷è22 ø 3ö由1知,n=2AC=2æ03-=(0,3,-1)為平面ABBA的法向量11ç,÷1133è22ø····················

57、83;·················································

58、83;·······································8 分æ13öBC=(-1,2,0),C1C=çç0,-÷,è22

59、ø設(shè) n2=(x,y,z)為平面 BCC1B1的法向量,那么ìïnBC,ìn2 ×BC =-x + 2 y = 0 ,故2ïíí1取 n2=(23,3,1), ····················10 分ïîn2C1C,ïn2 ×C1C=y- 3î22z = 0 ,

60、所以cosn1,n2=n1 ×n2=3 -1 =1, ············································

61、3;········11分2´44n1 n2設(shè)二面角 A -BB1 -C 的大小為q,那么sinq=20. 本小題總分值12 分= ··················12 分1 - ç - 4 ÷æ 1 ö2èø154【命題意圖】本小題主要考查直線與橢圓的位置關(guān)系等根

62、底知識(shí);考查推理論證能力、運(yùn)算求解能力;考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想;考查直觀想象、邏輯推理、數(shù)學(xué)運(yùn)算等核心素養(yǎng),表達(dá)根底性、綜合性與創(chuàng)新性總分值12 分2【解答】解法一:1依題意,a=·································

63、;················1 分a2 + b23由橢圓的對(duì)稱性可知,四邊形A1B2A2B1為菱形,其周長(zhǎng)為4=4 ···· 3 分所以b =1,····················

64、3;·················································

65、3;·················4 分x22所以E的方程為+y2=1 ·····························

66、83;··································· 5分2設(shè)P(x,y ),那么2y2 =2-x2,··········&#

67、183;············································6 分00直線 A1P 的方程為 y =00x0 + 2y0(x

68、+2),故Cç0,2y0ö÷, ························7 分æèx0 + 2øy0æ2 y0 öx0 - 2由A1DPA2知A1D的方程為y=(x+2),故Dç0,÷,·····

69、83;····8 分èx0 - 2ø假設(shè)存在Q(t,0),使得QC×QD=3,那么QC ×QDæt , 2 y0öæt , 2 y0 ö=ç-èx0 +÷×ç-øèx0 -÷22ø2 y2=t2+ 00x2 -22 -x2=t2+ 00x2 -2············

70、··················································

71、··············9 分= t2 -1= 3 ·································

72、3;·················································

73、3;10 分解得t = ±2 ··············································

74、3;······································11 分所以當(dāng)Q的坐標(biāo)為(±2,0)時(shí),QC×QD=3·····

75、83;······································12 分解法二1同解法一·········

76、83;·················································

77、83;············5 分2當(dāng)點(diǎn)P與點(diǎn)B1重合時(shí),C點(diǎn)即B1(0,1),而點(diǎn)D即B2(0,-1),假設(shè)存在Q(t,0),使得QC×QD=3,那么(-t,1)×(-t,-1)=3,即t2-1=3,解得t=±2···················6 分

78、以下證明當(dāng)Q為(±2,0)時(shí), QC×QD=3設(shè)P(x,y ),那么2y2 =2-x2,·········································

79、······················7 分0000x0 + 2直線 AP的方程為 y=1y0(x+2 ),故C 0 ,2y0ö,···················

80、83;·····8 分æ2èøçx0 +÷由 AD PA知 AD的方程為 y=y0(x+2 ),故 D 0 ,2y0öæ2ø, ··········9 分12所以QC×QD1æt , 2 y0x0 - 222èøöæt , 2 y0 öçx0 -÷=ç-èx0

81、 +2 y2÷×ç-øèx0 -÷=t2+ 00x2 -22 -x2·······································&#

82、183;································10 分=4+ 0 ···············

83、3;·················································

84、3;·······11分0x2 - 2= 4 -1=3·······································

85、3;·········································12 分說(shuō)明: Q只求出(2,0)或(-2,0),不扣分21. 本小題總分值12分【命題意圖】本小題主要

86、考查古典概型、概率分布列、等差數(shù)列、導(dǎo)數(shù)等根底知識(shí);考查數(shù)據(jù)處理能力、推理論證能力、運(yùn)算求解能力與創(chuàng)新意識(shí);考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、分類與整合思想、必然與或然思想;考查數(shù)學(xué)建模、邏輯推理、數(shù)學(xué)運(yùn)算等核心素養(yǎng),表達(dá)綜合性、應(yīng)用性與創(chuàng)新性總分值12 分【解答】1設(shè)恰好有 3 個(gè)股東同時(shí)選擇同一款理財(cái)產(chǎn)品的事件為 A,由題意知,5個(gè)股東共有45 種選擇,而恰好有 3 個(gè)股東同時(shí)選擇同一款理財(cái)產(chǎn)品的可能情況為C3×(A2+A3)種,544C3×(A2+A3)45所以P(A)=54454 =128 ······&

87、#183;·················································&

88、#183;···4 分22021 年全年該公司從協(xié)定存款中所得的利息為:éë(550+500+450+50)+ 50ù´0.0 168+ 100 +û12=é550+50´11+50ù´0.0014=4.69萬(wàn)元······················&#

89、183;·····················6 分êë2úû由條件,高新工程投資可得收益頻率分布表投資收益 t3-x+ 0.02x2 + 0.135x 30 0000-0.27xP0.60.20.2············&

90、#183;·················································&

91、#183;·········································7 分所以,高新工程投資所得收益的期望為:æx32ö32+ 0.027x

92、32;30000ø所以,存款利息和投資高新工程所得的總收益的期望為:L (x)=-0.000 02x3 +0.012x2 + 0.027x + 0.036 ´(500 -x)+ 0.018 ´6 x + 4.6912=-0.00002x3+0.012x2+22.690x500 ························&#

93、183;··············9 分L¢(x)=-0.00006(x2-400x)令 L¢(x)= 0 ,得 x = 400 ,或 x = 0 由L¢(x)0,得0x400;由L¢(x)0,得400x500·················11

94、分由條件可知,當(dāng)x=400時(shí),L(x)取得最大值為:L(400)=662.69萬(wàn)元所以當(dāng)x=400時(shí),該公司2021年存款利息和投資高新工程所得的總收益的期望取得最大值662.69萬(wàn)元··································

95、3;··············································12 分22. 本小題總分值12分【解答】解

96、法一:1依題意,f¢(x)=x(x+2)ex,那么································1 分當(dāng)xÎ(-¥,-2)(0,+¥)時(shí),f¢(x)0;當(dāng)xÎ(-2,0)時(shí),f¢(x)0;&#

97、183;···········2 分所以f(x)在區(qū)間(-¥,-2),(0,+¥)上單調(diào)遞增,在區(qū)間(-2,0)上單調(diào)遞減····· 3 分因?yàn)?f(-2)=4 -10 , f (1)= e -10 ,e2所以f(x)有且只有1個(gè)零點(diǎn)···············

98、83;···············································5 分2令 F (x)=x2e

99、x -a (2 ln x +x)-1 ,那么¢( ) = ( +x -=)a(x+2)(x+2)(x2ex-a)Fxxx2ex0 ··························6 分xx假設(shè)a 0 ,那么F ¢(x) 0 , F (x)為增函數(shù),eeF æ1ö=-1-aæ2ln1+1

100、ö=-1-aæ1-ln4ö0,不合題意;··············7 分ç2÷4ç22÷4ç2÷èøèøèø假設(shè)a0,令 h(x)=x2ex(x0),易知 h(x)單調(diào)遞增,且值域?yàn)?0,+¥),那么存在x0,使得x2ex0=a,即2lnx+x=lna····

101、;··············································8 分0000當(dāng) xÎ(0, x0)時(shí), F¢(x) 0, F(x)單調(diào)遞減; 當(dāng) xÎ(x0,+¥)時(shí), F¢(x)0, F(x)單調(diào)遞增F (x)=F(x)=x2ex0-a(2lnx+x)-1=a-alna-1, ·························

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論