版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、解排列組合問(wèn)題的策略 要正確解答排列組合問(wèn)題,第一要認(rèn)真審題,弄清楚是排列問(wèn)題還是組合問(wèn)題、還是排列與組合混合問(wèn)題;第二要抓住問(wèn)題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉?lái)處理,做到不重不漏;第三要計(jì)算正確下面將通過(guò)對(duì)若干例題的分析,探討解答排列組合問(wèn)題的一些常見(jiàn)策略,供大家參考 一、解含有特殊元素、特殊位置的題采用特殊優(yōu)先安排的策略 對(duì)于帶有特殊元素的排列問(wèn)題,一般應(yīng)先考慮特殊元素、特殊位置,再考慮其他元素與其他位置,也就是解題過(guò)程中的一種主元思想 例1:用0,2,3,4,5這五個(gè)數(shù)字,組成沒(méi)有重復(fù)數(shù)字的三位數(shù),其中偶數(shù)共有( ) A24個(gè) B30個(gè) C40個(gè) D60個(gè) 解:因組成的三位數(shù)為偶數(shù),末尾
2、的數(shù)字必須是偶數(shù),又0不能排在首位,故0是其中的“特殊”元素,應(yīng)優(yōu)先安排,按0排在末尾和0不排在末尾分為兩類(lèi):當(dāng)0排在末尾時(shí),有個(gè);當(dāng)0不排在末尾時(shí),三位偶數(shù)有個(gè),據(jù)加法原理,其中偶數(shù)共有+30個(gè),選B 若含有兩個(gè)或兩個(gè)以上的特殊位置或特殊元素,則應(yīng)使用集合的思想來(lái)考慮這里僅舉以下幾例 (1)無(wú)關(guān)型(兩個(gè)特殊位置上分別可取的元素所組成的集合的交是空集) 例2:用0,1,2,3,4,5六個(gè)數(shù)字可組成多少個(gè)被10整除且數(shù)字不同的六位數(shù)? 解:由題意可知,兩個(gè)特殊位置在首位和末位,特殊元素是“0,首位可取元素的集合A1,2,3,4,5,末位可取元素的集合B0,AB如圖1所示 末位上有種排法,首位上有
3、種不同排法,其余位置有種不同排法所以,組成的符合題意的六位數(shù)是 120(個(gè)) 說(shuō)明:這個(gè)類(lèi)型的題目,兩個(gè)特殊位置上所取的元素是無(wú)關(guān)的先分別求出兩個(gè)特殊位置上的排列數(shù)(不需考慮順序),再求出其余位置上的排列數(shù),最后利用乘法原理,問(wèn)題即可得到解決 (2)包合型(兩個(gè)特殊位置上分別可取的元素所組成集合具有包合關(guān)系) 例3:用0,1,2,3,4,5六個(gè)數(shù)字可組成多少個(gè)被5整除且數(shù)字不同的六位奇數(shù)? 解:由題意可知,首位、末位是兩個(gè)特殊位置,“0”是特殊元素,首位可取元素的集合A1,2,3,4,5,末位可取元素的集合B5,BA,用圖2表示。 末位上只能取5,有種取法,首位上雖然有五個(gè)元素可取但元素5已經(jīng)
4、排在末位了,故只有種不同取法,其余四個(gè)位置上有種不同排法,所以組成的符合題意的六位數(shù)有96(個(gè)) 說(shuō)明:這個(gè)類(lèi)型的題目,兩個(gè)特殊位置上所取的元素組成的集合具有包含關(guān)系,先求被包合的集合中的元素在特殊位置上的排列數(shù),再求另一個(gè)位置上的排列數(shù),次求其它位置上排列數(shù),最后利用乘法原理,問(wèn)題就可解決 (3)影響型(兩個(gè)特殊位置上可取的元素既有相同的,又有不同的這類(lèi)題型在高考中比較常見(jiàn)) 例4:用1,2,3,4,5這五個(gè)數(shù)字,可以組成比20000大并且百位數(shù)字不是3的沒(méi)有重復(fù)數(shù)字的五位數(shù)有多少個(gè)? 解:由題意可知,首位和百位是兩個(gè)特殊位置,“3”是特殊元素首位上可取元素的集合A2,3,4,5,百位上可取
5、元素的集合B1,2,4,5用圖3表示 從圖中可以看出,影響型可分成無(wú)關(guān)型和包含型首先考慮首位是3的五位數(shù)共有:個(gè);再考慮首位上不是3的五位數(shù),由于要比20000大,首位上應(yīng)該是2、4、5中的任一個(gè),種選擇;其次3應(yīng)排在千位、十位與個(gè)位三個(gè)位置中的某一個(gè)上,種選擇,最后還有三個(gè)數(shù)、三個(gè)位置,有種排法,于是首位上不是3的大于20000的五位數(shù)共有個(gè) 綜上,知滿足題設(shè)條件的五位數(shù)共有:+78個(gè) 二、解含有約束條件的排列組合問(wèn)題一采用合理分類(lèi)與準(zhǔn)確分步的策略 解含有約束條件的排列組合問(wèn)題,應(yīng)按元素的性質(zhì)進(jìn)行分類(lèi),按事件發(fā)生的連貫過(guò)程分步,做到分類(lèi)標(biāo)準(zhǔn)明確、分步層次清楚,不重不漏 例5:平面上4條平行直
6、線與另外5條平行直線互相垂直,則它們構(gòu)成的矩形共有_個(gè) 簡(jiǎn)析:按構(gòu)成矩形的過(guò)程可分為如下兩步:第一步先在4條平行線中任取兩條,有種取法;第二步再在5條平行線中任取兩條,有種取法這樣取出的四條直線構(gòu)成一個(gè)矩形,據(jù)乘法原理,構(gòu)成的矩形共有·60個(gè) 例6:在正方體的8個(gè)頂點(diǎn),12條棱的中點(diǎn),6個(gè)面的中心及正方體的中心共27個(gè)點(diǎn)中,共線的三點(diǎn)組的個(gè)數(shù)是多少? 解:依題意,共線的三點(diǎn)組可分為三類(lèi):兩端點(diǎn)皆為頂點(diǎn)的共線三點(diǎn)組共有28(個(gè));兩端點(diǎn)皆為面的中心的共線三點(diǎn)組共有3(個(gè));兩端點(diǎn)皆為各棱中點(diǎn)的共線三點(diǎn)組共有18(個(gè)) 所以總共有28+3+1849個(gè) 例7:某種產(chǎn)品有4只次品和6只正品(
7、每只產(chǎn)品均可區(qū)分)每次取一只測(cè)試,直到4只次品全部測(cè)出為止求第4只次品在第五次被發(fā)現(xiàn)的不同情形有多少種? 解:先考慮第五次測(cè)試的產(chǎn)品有4種情況,在前四次測(cè)試中包含其余的3只次品和1只正品,它們排列的方法數(shù)是6。依據(jù)乘法原理得所求的不同情形有4×6576種 有些排列組合問(wèn)題元素多,取出的情況也有多種,對(duì)于這類(lèi)問(wèn)題常用的處理方法是:可按結(jié)果要求,分成不相容的幾類(lèi)情況分別計(jì)算,最后計(jì)算總和 例8:由數(shù)字0,1,2,3,4,5組成沒(méi)有重復(fù)的6位數(shù),其中個(gè)位數(shù)字小于十位數(shù)字的共有 ( ) A、210個(gè) B、300個(gè) C、464個(gè) D、600個(gè) 分析:按題意個(gè)位數(shù)字只可能是0,1,2,3,4共5
8、種情況,符合題的分別有,個(gè) 合并總計(jì),共有+300(個(gè)) 故選B 說(shuō)明:此題也可用定序問(wèn)題縮位法求解,先考慮所有6位數(shù):個(gè),因個(gè)位數(shù)字須小于個(gè)位數(shù)字,故所求6位數(shù)有()/300(個(gè)) 處理此類(lèi)問(wèn)題應(yīng)做到不重不漏即每?jī)深?lèi)的交集為空集,所有類(lèi)的并集為合集因此要求合理分類(lèi) 例9:已知集合A和集合B各含12個(gè)元素,AB含有4個(gè)元素,試求同時(shí)滿足下面的兩個(gè)條件的集合C的個(gè)數(shù): (1)CAB,且C中含有3個(gè)元素; (2)CA(表示空集)。 分析:由題意知,屬于集合B而不屬于集合A元素個(gè)數(shù)為12-48,因此滿足條件(1)、(2)的集合C可分為三類(lèi):第一類(lèi):含A中一個(gè)元素的集C有個(gè);第二類(lèi):含A中二個(gè)元素的集
9、C有個(gè);第三類(lèi):含A中三個(gè)元素的集C有 個(gè)。故所求集C的個(gè)數(shù)是+1084 有序分配問(wèn)題是指把元素按要求分成若干組,分別分配到不同的位置上,對(duì)于這類(lèi)問(wèn)題的常用解法,是先將元素逐一分組,然后再進(jìn)行全排列、但在分組時(shí)要注意是否為均勻分組 例10:3名醫(yī)生和6名護(hù)士被分配到3所學(xué)校為學(xué)生體檢,每校分配1名醫(yī)生和2名護(hù)土,不同的分配方法共有 ( ) A90種 B180種 C270種 D540種 分析:(一)先分組、后分配: 第一步:將3名醫(yī)生分成3組,每組一人只有一種分法第二步:將6名護(hù)士分成3組,每組2人有:()/種分法第三步:將醫(yī)生3組及護(hù)士3組進(jìn)行搭配,使每組有一名醫(yī)生、2名護(hù)士,有種搭配方法第四
10、步:將所得的3組分配到3所不同的學(xué)校有種分配法 故共有不同的分配方法:·540(種)故選(D) 分析:(二)第一步:先將6名護(hù)士分配到3所不同學(xué)校,每所學(xué)校2名,則有(種)分法 第二步:再將3名醫(yī)生分配到3所不同的學(xué)校,每所學(xué)校1人,有種分法 故共有=540(種)故選(D) 說(shuō)明:處理此類(lèi)問(wèn)題應(yīng)注意準(zhǔn)確分步 三、解排列組合混合問(wèn)題采用先選后排策略 對(duì)于排列與組合的混合問(wèn)題,可采取先選出元素,后進(jìn)行排列的策略 例11:4個(gè)不同小球放入編號(hào)為1、2、3、4的四個(gè)盒子,則恰有一個(gè)空盒的放法有_種 簡(jiǎn)析:這是一個(gè)排列與組合的混合問(wèn)題因恰有一個(gè)空盒,所以必有一個(gè)盒子要放2個(gè)球,故可分兩步進(jìn)行:
11、第一步選,從4個(gè)球中任選2個(gè)球,有種選法。從4個(gè)盒子中選出3個(gè),有種選法;第二步排列,把選出的2個(gè)球視為一個(gè)元素,與其余的2個(gè)球共3個(gè)元素對(duì)選出的3個(gè)盒子作全排列,有種排法所以滿足條件的放法共有 =144種 四、正難則反、等價(jià)轉(zhuǎn)化策略 對(duì)某些排列組合問(wèn)題,當(dāng)從正面入手情況復(fù)雜,不易解決時(shí),可考慮從反面入手,將其等價(jià)轉(zhuǎn)化為一個(gè)較簡(jiǎn)單的問(wèn)題來(lái)處理即采用先求總的排列數(shù)(或組合數(shù)),再減去不符合要求的排列數(shù)(或組合數(shù)),從而使問(wèn)題獲得解決的方法其實(shí)它就是補(bǔ)集思想 例12:馬路上有編號(hào)為1、2、3、9的9只路燈,為節(jié)約用電,現(xiàn)要求把其中的三只燈關(guān)掉,但不能同時(shí)關(guān)掉相鄰的兩只或三只,也不能關(guān)掉兩端的路燈,
12、則滿足條件的關(guān)燈方法共有_種 簡(jiǎn)析:關(guān)掉一只燈的方法有7種,關(guān)第二只、第三只燈時(shí)要分類(lèi)討論,情況較為復(fù)雜,換一個(gè)角度,從反面入手考慮因每一種關(guān)燈的方法唯一對(duì)應(yīng)著一種滿足題設(shè)條件的亮燈與暗燈的排列,于是問(wèn)題轉(zhuǎn)化為在6只亮燈中插入3只暗燈,且任何兩只暗燈不相鄰、且暗燈不在兩端,即從6只亮燈所形成的5個(gè)間隙中選3個(gè)插入3只暗燈,其方法有 10種。故滿足條件的關(guān)燈的方法共有10種 例13:甲、乙兩隊(duì)各出7名隊(duì)員按事先排好的順序出場(chǎng)參加圍棋擂臺(tái)賽,雙方先由1號(hào)隊(duì)員比賽,負(fù)者被淘汰,勝者再與負(fù)方2號(hào)隊(duì)員比賽,直到有一方隊(duì)員全被淘汰為止,另一方獲勝,形成種比賽過(guò)程,那么所有可能出現(xiàn)的比賽過(guò)程共有多少種? 解
13、:設(shè)甲隊(duì)隊(duì)員為al,a2,a7,乙隊(duì)隊(duì)員為b1,b2,,b7,下標(biāo)表示事先安排好的出場(chǎng)順序,若以依次被淘汰的隊(duì)員為順序,比賽過(guò)程可類(lèi)比為這14個(gè)字母互相穿插的一個(gè)排列,最后是勝隊(duì)中獲勝隊(duì)員和可能未參賽的隊(duì)員如a1a2b1b2a3b3b4b5a4b6b7a5a6a7. 所表示為14個(gè)位置中取7個(gè)位置安排甲隊(duì)隊(duì)員,其余位置安排乙隊(duì)隊(duì)員,故比賽過(guò)程的總數(shù)為 3432. 例14:有2個(gè)a,3個(gè)b,4個(gè)c 共九個(gè)字母排成一排,有多少種排法? 分析:若將字母作為元素,19號(hào)位置作為位子,那么這是一個(gè)“不盡相異元素的全排列”問(wèn)題,若轉(zhuǎn)換角色,將19號(hào)位置作為元素,字母作為位子,那么問(wèn)題便轉(zhuǎn)化成一個(gè)相異元素不
14、許重復(fù)的組合問(wèn)題 即共有1260(種)不同的排法 有些問(wèn)題反面的情況為數(shù)不多,容易討論,則可用剔除法 對(duì)有限制條件的問(wèn)題,先以總體考慮,再把不符合條件的所有情況剔除這是解決排列組合應(yīng)用題時(shí)一種常用的解題策略 例15:四面體的頂點(diǎn)和各棱中點(diǎn)共有10個(gè)點(diǎn),在其中取4個(gè)不共面的點(diǎn),不同的取法共有( ) A150種 B147種 C14種 D141種 分析:在這10個(gè)點(diǎn)中,不共面的不易尋找,而共面的容易找因此,采用剔除法,由10個(gè)點(diǎn)中取出4個(gè)點(diǎn)的組合數(shù)(減去4個(gè)點(diǎn)共面的個(gè)數(shù)即為所求)4點(diǎn)共面情形可分三類(lèi):第一類(lèi):四面體每個(gè)面中的四個(gè)點(diǎn)共面,共有4×60種;第二類(lèi):四面體的每2組對(duì)棱的中點(diǎn)構(gòu)成平
15、行四邊形,則這四點(diǎn)共面,共有3種;第三類(lèi):四面體的一條棱上三點(diǎn)共線,這三點(diǎn)與對(duì)棱中點(diǎn)共面,共有6種故4點(diǎn)不共面的取法有-(4+6+3)141種 例16:從0、1、2、3、4、5、6、7、8、9這10個(gè)數(shù)中取出3個(gè)數(shù),使和為不小于10的偶數(shù),不同的取法有多少種 解:從這10個(gè)數(shù)中取出3個(gè)不同的偶數(shù)的取法有種;取1個(gè)偶數(shù)和2個(gè)奇數(shù)的取法有種另外,從這10個(gè)數(shù)中取出3個(gè)數(shù),使其和為小于10的偶數(shù),有9種不同取法 因此,符合題設(shè)條件的不同取法有+-951種 五、解相鄰問(wèn)題采用“捆綁”策略 對(duì)于某幾個(gè)元素要求相鄰的排列問(wèn)題,可先將相鄰的元素“捆綁”起來(lái)看作一個(gè)元素與其他元素排列,然后再在相鄰元素之間排列
16、 事實(shí)上,這種方法就是將相鄰的某幾個(gè)元素,優(yōu)先考慮。讓這些特殊元素合成一個(gè)元素,與普通元素排列后,再松綁 例17:A,B,C,D,E五人并排站成一排,如A,B必相鄰,且B在A右邊,那么不同排法有( ) A24種 B60種 C90種 D120種 分析:將特殊元素A,B按B在A的右邊“捆綁”看成一個(gè)大元素,與另外三個(gè)元素全排列 ,由A,B不能交換,故不再“松綁”,選A 例18:5人成一排,要求甲、乙相鄰,有幾種排法? 解:將甲、乙“捆綁”成一個(gè)元素,加上其他3元素,共4元素,全排列有種,甲、乙內(nèi)部的排列有種故共有 48種 也可以這樣理解:先讓甲、丙、丁、戊,排成一列有種,再將乙插入甲的左邊或右邊,
17、有種,共48種 例19:計(jì)劃展出10幅不同的畫(huà),其中一幅水彩畫(huà)、4幅油畫(huà)、5幅國(guó)畫(huà),排成一行陳列,要求同一品種的畫(huà)必須連在一起,并且水彩畫(huà)不放在兩端,那么不同的陳列方式有多少種? ( ) A、B、C、D、 分析:先把3種品種的畫(huà)各看成整體,而水彩畫(huà)不能放在頭尾,故只能放在中間,又油畫(huà)與國(guó)畫(huà)有種放法,再考慮油畫(huà)與國(guó)畫(huà)本身又可以全排列,故排列的方法為,故選D. 例20:5名學(xué)生和3名老師站成一排照相,3名老師必須站在一起的不同排法共有_種 簡(jiǎn)析:將3名老師捆綁起來(lái)看作一個(gè)元素,與5名學(xué)生排列,有種排法;而3名老師之間又有種排法,故滿足條件的排法共有 4320種 用“捆綁”法解題比較簡(jiǎn)單,實(shí)質(zhì)是通過(guò)
18、“捆綁”減少了元素,它與下面要提到的“插孔”法結(jié)合起來(lái),威力便更大了 六、解不相鄰問(wèn)題采用“插孔”策略 對(duì)于某幾個(gè)元素不相鄰的排列問(wèn)題,可先將其他元素排列好,然后再將不相鄰的元素在這些排好的元素之間及兩端的空隙中插入 例21:7人站成一行,如果甲、乙兩人不相鄰,則不同的排法種數(shù)是 ( ) A1440種 B3600種 C4320種 D4800種 簡(jiǎn)析:先讓甲、乙之外的5人排成一行,有種排法,再讓甲、乙兩人在每?jī)扇酥g及兩端的六個(gè)間隙中插入,有種方法故共有·3600種排法,選B 例22:要排一個(gè)有6個(gè)歌唱節(jié)目和4個(gè)舞蹈節(jié)目的演出節(jié)目單,任何兩個(gè)舞蹈不相鄰,問(wèn)有多少種不同排法? 分析:先將
19、6個(gè)歌唱節(jié)目排成一排有種排法,6個(gè)歌唱節(jié)目排好后包括兩端共有7個(gè)“間隔”可以插入4個(gè)舞蹈節(jié)目有種,故共·6!604800種不同排法 例23:從1,2,3,2000這2000個(gè)自然數(shù)中,取出10個(gè)互不相鄰的自然數(shù),有多少種方法? 解:將問(wèn)題轉(zhuǎn)化成把10名女學(xué)生不相鄰地插入站成一列橫列的1990名男生之間(包括首尾兩側(cè)),有多少種方法? 因?yàn)槿我庀噜?名男學(xué)生之間最多站1名女學(xué)生,隊(duì)伍中的男學(xué)生首尾兩側(cè)最多也可各站1名女學(xué)生于是,這就是1991個(gè)位置中任選10個(gè)位置的組合問(wèn)題,故共有種方法 利用“插孔”法,也可以減少元素,從而簡(jiǎn)化問(wèn)題 例24:一排6張椅子上坐3人,每2人之間至少有一張空
20、椅子,求共有多少種不同的坐法? 解:將問(wèn)題轉(zhuǎn)化成把3個(gè)人坐5張椅子,然后插一把空椅子問(wèn)題 3個(gè)人若坐5張椅子,每2人之間一張空椅子坐法是固定的有種不同的坐法,然后,將余下的那張椅子插入3個(gè)坐位的4個(gè)空隙,有4種插法所以共有424種不同的坐法 七、解定序問(wèn)題采用除法策略 對(duì)于某幾個(gè)元素順序一定的排列問(wèn)題,可先把這幾個(gè)元素與其它元素一同進(jìn)行排列,然后用總排列數(shù)除以這幾個(gè)元素的全排列數(shù),這其實(shí)就是局部有序問(wèn)題,利用除法來(lái)“消序” 例25:由數(shù)字0、1、2、3、4、5組成沒(méi)有重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)小于十位數(shù)字的共有( ) A210個(gè) B300個(gè) C. 464個(gè) D600個(gè) 簡(jiǎn)析:若不考慮附加條件
21、,組成的六位數(shù)共有個(gè),而其中個(gè)位數(shù)字與十位數(shù)字的種排法中只有一種符合條件,故符合條件的六位數(shù)共300個(gè),故選B 例26:信號(hào)兵把紅旗與白旗從上到下掛在旗桿上表示信號(hào),現(xiàn)有3面紅旗、2面白旗,把這5面旗都掛上去,可表示不同信號(hào)的種數(shù)是 _(用數(shù)字作答) 分析:5面旗全排列有種掛法,由于3面紅旗與2面白旗的分別全排列均只能作一次的掛法,故共有不同的信號(hào)種數(shù)是10(種) 說(shuō)明:此題也可以用組合來(lái)解,只需5個(gè)位置中確定3個(gè),即10 例27:有4個(gè)男生,3個(gè)女生,高矮互不相等,現(xiàn)將他們排成一行,要求從左到右,女生從矮到高排列,有多少種排法? 分析:先在7個(gè)位置上任取4個(gè)位置排男生,有種排法,剩余的3個(gè)位
22、置排女生,因要求“從矮到高”,只有一種排法,故共有840種 在處理分堆問(wèn)題時(shí),有時(shí)幾堆中元素個(gè)數(shù)相等,這時(shí)也要用除法, 例28:不同的鋼筆12支,分3堆,一堆6支,另外兩堆各3支,有多少種分法? 解:若3堆有序號(hào),則有·,但考慮有兩堆都是3支,無(wú)須區(qū)別,故共有/9240種 例29:把12支不同的鋼筆分給3人,一人得6支,二人各得3,有幾種分法? 解:先分堆:有/種再將這三堆分配給三人,有種。共有·/3.種 本題亦可用“選位,選項(xiàng)法”,即:=3.八、解分排問(wèn)題采用直排處理的策略 把n個(gè)元素排成前后若干排的排列問(wèn)題,若沒(méi)有其他特殊要求,可采取統(tǒng)一排成一排的方法來(lái)處理 例30:兩
23、排座位,第一排3個(gè)座位,第二排5個(gè)座位,若8位學(xué)生坐(每人一個(gè)座位)。則不同的坐法種數(shù)是 ( ) A、B、C、D、 簡(jiǎn)析:因8名學(xué)生可在前后兩排的8個(gè)座位中隨意入坐,再無(wú)其他條件,所以兩排座位可看作一排來(lái)處理,其不同的坐法種數(shù)是,故應(yīng)選D 九、解“小團(tuán)體”排列問(wèn)題采用先整體后局部策略 對(duì)于“小團(tuán)體”排列問(wèn)題,可先將“小團(tuán)體”看作一個(gè)元素與其余元素排列,最后再進(jìn)行“小團(tuán)體”內(nèi)部的排列 例31:三名男歌唱家和兩名女歌唱家聯(lián)合舉行一場(chǎng)音樂(lè)會(huì),演出的出場(chǎng)順序要求兩名女歌唱家之間恰有一名男歌唱家,其出場(chǎng)方案共有( ) A36種 B18種 C12種 D6種 簡(jiǎn)析:按要求出場(chǎng)順序必須有一個(gè)小團(tuán)體“女男女”,
24、因此先在三名男歌唱家中選一名(有種選法)與兩名女歌唱家組成一個(gè)團(tuán)體,將這個(gè)小團(tuán)體視為一個(gè)元素,與其余2名男歌唱家排列有種排法。最后小團(tuán)體內(nèi)2名女歌唱家排列有種排法,所以共有36種出場(chǎng)方案,選A。 十、簡(jiǎn)化計(jì)算繁瑣類(lèi)問(wèn)題采用遞歸策略 所謂遞歸策略,就是先建立所求題目結(jié)果的一個(gè)遞推關(guān)系式,再經(jīng)簡(jiǎn)化題目條件得出初始值,進(jìn)而遞推得到所求答案 例32:有五位老師在同一年級(jí)的6個(gè)班級(jí)中,分教一個(gè)班的數(shù)學(xué),在數(shù)學(xué)會(huì)考中,要求每位老師均不在本班監(jiān)考,共有安排監(jiān)考的方法總數(shù)是多少? 解:記n元安排即al、a2、an個(gè)元素的排列,且滿足“ai不在第i位上的方法總數(shù)為an. 固定n-1個(gè)元素不動(dòng)的排法是1; 固定n
25、-2個(gè)元素不動(dòng)的排法是; 固定n-3個(gè)元素不動(dòng)的排法是; 固定1個(gè)元素不動(dòng)的排法是·an-1; an=n!-1-·an-1(n3, nN) 容易計(jì)算得a21,由上式遞推可得:a32,a4=9,a544 因此,共有安排監(jiān)考的方案總數(shù)為44種 十一、解較復(fù)雜的排列問(wèn)題采用構(gòu)造型策略 對(duì)較復(fù)雜的排列問(wèn)題,可通過(guò)構(gòu)造一個(gè)相應(yīng)的模型來(lái)處理 例33:某校準(zhǔn)備組建一個(gè)18人的足球隊(duì),這18人由高一年級(jí)10個(gè)班的學(xué)生組成,每個(gè)班級(jí)至少1人,名額分配方案共有_種 簡(jiǎn)析:構(gòu)造一個(gè)隔板模型如圖,取18枚棋子排成一列,在相鄰的每?jī)擅镀遄有纬傻?7個(gè)間隙中選取9個(gè)插入隔板,將18枚棋子分隔成10個(gè)區(qū)
26、間,第i(1i10)個(gè)區(qū)間的棋子數(shù)對(duì)應(yīng)第i個(gè)班級(jí)學(xué)生的名額,因此名額分配方案的種數(shù)與隔板插入數(shù)相等。因隔板插入數(shù)為,故名額分配方案有24310種 例34:將組成籃球隊(duì)的12個(gè)名額分給7所學(xué)校,每所學(xué)校至少1個(gè)名額,問(wèn)名額分配方法有多少種? 解:將問(wèn)題轉(zhuǎn)化成一把排成一行的12個(gè)0分成7份的方法數(shù),這樣用6塊閘板插在11個(gè)間隔中,共有462種不同方法所以名額分配總數(shù)是種。 例35:6人帶10瓶汽水參加春游,每人至少帶1瓶汽水,有多少種不同的帶法? 解:將問(wèn)題轉(zhuǎn)化成把10個(gè)相同的球放到6個(gè)不同的盒子里,每個(gè)盒子里至少放1個(gè)球,有多少種不同的放法? 即把排成一行的10個(gè)0分成6份的方法數(shù),這樣用5塊閘
27、板插在9個(gè)間隔中,共有126種 即原問(wèn)題中有126種不同帶法 例36:對(duì)正方體的8個(gè)頂點(diǎn)作兩兩連線。其中異面直線的有( )對(duì) A156 B174 C192 D210 分析:由于每一個(gè)三棱錐對(duì)應(yīng)于3對(duì)異面直線,故可構(gòu)造三棱錐,問(wèn)題即特化為正方體8個(gè)頂點(diǎn)構(gòu)成三棱錐的個(gè)數(shù),易得異面直線有(-6-6)×3174(對(duì)),選B 十二、建立排列組合與集合之間的對(duì)應(yīng)關(guān)系的策略 排列組合問(wèn)題往往因其文字?jǐn)⑹龀橄蠖箤W(xué)生理解困難,在解決這類(lèi)問(wèn)題時(shí),我們通常是根據(jù)加法或乘法原理將問(wèn)題分類(lèi)或分步逐一計(jì)算,然而由于問(wèn)題的抽象性與復(fù)雜性,我們?cè)诜诸?lèi)或分步的過(guò)程中,經(jīng)常會(huì)出現(xiàn)重復(fù)或遺漏的現(xiàn)象如果我們運(yùn)用集合與對(duì)應(yīng)
28、的思想來(lái)分析和處理這類(lèi)問(wèn)題,則能有效地解決上述矛盾 例37:由數(shù)字1,2,3,4,5可以組成多少個(gè)無(wú)重復(fù)數(shù)字的 (1)1不在首位、5在末位的五位數(shù)? (2)2,3都與4不相鄰的五位數(shù)? 解:(1)A1 在首位的五位數(shù),B5 在末位的五位數(shù),則原題即求n() 已知n()=n(B)-n(AB)易知n(B),n(AB)=, (即1在首位,5在末位的五位數(shù)的個(gè)數(shù)),n()-=18 因而滿足已知條件的五位數(shù)有18個(gè) (3)設(shè)A=2與4相鄰的五位數(shù), B3與4相鄰的五位數(shù)則原題即求n()由摩根律、容斥原理及性質(zhì)2, 有n()=n()=n(I-AB)=n(I)-n(AB)=n(I)-n(A)-n(B)+n(
29、AB)= =36.即有36個(gè)滿足已知條件的數(shù) 說(shuō)明:其中n(I)表示由數(shù)字1,2,3,4,5組成的無(wú)重復(fù)數(shù)字的五位數(shù)的個(gè)數(shù),即它們的全排列數(shù),n(AB)表示2與4相鄰且3與4相鄰的五位數(shù)的個(gè)數(shù),那么4一定排在2與3之間,且2,4,3相鄰,故有種排法 例38:將數(shù)字1,2,3,4填入標(biāo)號(hào)為1,2,3,4的四個(gè)方格里,每格填一個(gè)數(shù),則每個(gè)方格的標(biāo)號(hào)與所填數(shù)字均不同的填法有多少種? 解:設(shè)Ai(i=1,2,3,4)表示i填在標(biāo)號(hào)為i的方格內(nèi),且其余格子都填滿的所有填法的集體,則原題即求 n,由摩根律及容斥原理,有 n=n()=n(I)-n(A1A2A3A4) =n(I)-(AiAhAj)+n(A1A
30、2A3A4) =. 即有9種填法。 說(shuō)明:系數(shù)代表從集合Al、A2、A3、A4中每次取出1個(gè)、2個(gè)、3個(gè)、4個(gè)組成交集的個(gè)數(shù), 例39:男運(yùn)動(dòng)員6名,女運(yùn)動(dòng)員4名,其中男女隊(duì)長(zhǎng)各1人,選派5人外出比賽,在下列情形下各有多少種選派方法? (1)隊(duì)長(zhǎng)至少有1人參加;(2)既要有隊(duì)長(zhǎng),又要有女運(yùn)動(dòng)員 解:(1)設(shè)A選派5人有男隊(duì)長(zhǎng)參加的,B選派5人有女隊(duì)長(zhǎng)參加的,則原題即求n(AB), 而n(AB)=n(A)+n(B)-n(AB). n(A)=n(B), n(AB)=, 故n(AB)=2-=196. 另解:設(shè)A選派5人有1個(gè)隊(duì)長(zhǎng)參加的,B選派5人有2個(gè)隊(duì)長(zhǎng)參加的,則原題即求n(AB), n(A)=,
31、 n(B)=, n(AB)=n()=0. 因此n(AB)=n(A)+n(B)=+196 說(shuō)明:AB即選派5人既要有1個(gè)隊(duì)長(zhǎng)參加又要有2個(gè)隊(duì)長(zhǎng)參加這件事,這是不可能事件 (2)設(shè)A選派5人有隊(duì)長(zhǎng)參加的,B選派5人有女運(yùn)動(dòng)員參加的,則原題即求n(AB), 又n(AB)=n(I)-n()=n(I)-n() =n(I)-n()-n()+n()=191. 即有191種選派方法 說(shuō)明:即選派5人,既無(wú)隊(duì)長(zhǎng)又無(wú)女運(yùn)動(dòng)員參加 從以上3例我們可以看出,用集合與對(duì)應(yīng)思想分析處理排列組合問(wèn)題,實(shí)質(zhì)上就是將同一問(wèn)題中滿足不同限制條件的元素的排列或組合的全體與不同的集合之間建立相應(yīng)的對(duì)應(yīng)關(guān)系,而將各限制條件之間的關(guān)系轉(zhuǎn)
32、化為集合與集合之間的運(yùn)算關(guān)系,通過(guò)計(jì)算集合的元素個(gè)數(shù)來(lái)計(jì)算排列或組合的個(gè)數(shù),這有助于將帶有多個(gè)附加條件的排列或組合問(wèn)題分解為只有1個(gè)或簡(jiǎn)單幾個(gè)附加條件的排列或組合問(wèn)題來(lái)處理,這可大大簡(jiǎn)化復(fù)雜的分類(lèi)過(guò)程,從而降低了問(wèn)題的難度 例40:如果從數(shù)1,2,14中,按從小到大的順序取出al,a2,a3,使同時(shí)滿足a2-a13與a3-a23,那么所有符合上述要求的不同取法共有多少種? 解:設(shè)S=1,2,14,T=1,2,10; P=(a1,a2,a3)|a1,a2,a3S, a2-a13, a3-a23 Q=(b1,b2,b3)|b1,b2,b3T, b1<b2<b3, f: (a1, a2,
33、a3)(b1,b2,b3),其中b1=a1,b2=a2-2, b3=a3-4. 易證f是P和Q之間的一個(gè)一一對(duì)應(yīng),所以題目所求的取法種數(shù)恰好等于從T中任意取出三個(gè)不同數(shù)的取法種數(shù),共120種 例41:在100名選手之間進(jìn)行單循環(huán)淘汰賽(即一場(chǎng)比賽失敗要退出比賽),最后產(chǎn)生一名冠軍,問(wèn)要舉行幾場(chǎng)?分析:要產(chǎn)生一名冠軍,需淘汰掉冠軍以外的所有其它選手,即要淘汰99名選手,要淘汰一名選手,必須進(jìn)行一場(chǎng)比賽;反之,每比賽一場(chǎng)恰淘汰一名選手,兩者之間一一對(duì)應(yīng),故立即可得比賽場(chǎng)次99次。 十三、特征分析、試驗(yàn)策略 研究有約束條件的排列數(shù)問(wèn)題,須緊扣題目所提供的數(shù)字特征、結(jié)構(gòu)特征,進(jìn)行推理、分析求解 例42:由1,2,3,4,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 制作兒童課件教學(xué)課件
- 目送課件底板教學(xué)課件
- 蘑菇屋課件教學(xué)課件
- 卡通游戲課件教學(xué)課件
- 2024年度云計(jì)算平臺(tái)廣告業(yè)務(wù)合同
- 2024年度八寶山殯儀館鮮花制品物流配送服務(wù)合同
- 2024年度委托加工協(xié)議(定制產(chǎn)品)
- 2024年塑料模具生產(chǎn)與交付合同
- 2024年度健康醫(yī)療服務(wù)合同服務(wù)細(xì)節(jié)
- 2024供水供電合同
- 教育新篇章:數(shù)字化轉(zhuǎn)型
- 大學(xué)生職業(yè)生涯規(guī)劃嬰幼兒托育服務(wù)與管理
- 附件華紡星海家園二期項(xiàng)目情況匯報(bào)已開(kāi)未竣版
- (完整版)駕駛員違章違規(guī)處罰辦法
- “六項(xiàng)機(jī)制”工作實(shí)施方案
- 精神病問(wèn)診過(guò)程示例
- [語(yǔ)言類(lèi)考試復(fù)習(xí)資料大全]劍橋商務(wù)英語(yǔ)中級(jí)真題4
- 教育培訓(xùn)葉圣陶《稻草人》內(nèi)容簡(jiǎn)介心得體會(huì)PPT模板
- 中國(guó)駕照英文翻譯標(biāo)準(zhǔn)模板
- 四川大學(xué)機(jī)械制圖習(xí)題集第五版答案
- 日常學(xué)習(xí)自評(píng)互評(píng)參照表
評(píng)論
0/150
提交評(píng)論