![2.3《平面向量的基本定理及坐標(biāo)表示》教案(新人教必修4)_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/4fef85d9-23e3-4695-81af-b74ae02feedd/4fef85d9-23e3-4695-81af-b74ae02feedd1.gif)
![2.3《平面向量的基本定理及坐標(biāo)表示》教案(新人教必修4)_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/4fef85d9-23e3-4695-81af-b74ae02feedd/4fef85d9-23e3-4695-81af-b74ae02feedd2.gif)
![2.3《平面向量的基本定理及坐標(biāo)表示》教案(新人教必修4)_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/4fef85d9-23e3-4695-81af-b74ae02feedd/4fef85d9-23e3-4695-81af-b74ae02feedd3.gif)
![2.3《平面向量的基本定理及坐標(biāo)表示》教案(新人教必修4)_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/4fef85d9-23e3-4695-81af-b74ae02feedd/4fef85d9-23e3-4695-81af-b74ae02feedd4.gif)
![2.3《平面向量的基本定理及坐標(biāo)表示》教案(新人教必修4)_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/4fef85d9-23e3-4695-81af-b74ae02feedd/4fef85d9-23e3-4695-81af-b74ae02feedd5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2.3平面向量的基本定理及坐標(biāo)表示第4課時§2.3.1 平面向量基本定理教學(xué)目的:(1)了解平面向量基本定理;(2)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,初步掌握應(yīng)用向量解決實際問題的重要思想方法;(3)能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達. 教學(xué)重點:平面向量基本定理.教學(xué)難點:平面向量基本定理的理解與應(yīng)用.授課類型:新授課教 具:多媒體、實物投影儀教學(xué)過程:一、 復(fù)習(xí)引入:1實數(shù)與向量的積:實數(shù)與向量的積是一個向量,記作:(1)|=|;(2)>0時與方向相同;<0時與方向相反;=0時=2運算定律結(jié)合律:()=() ;分配律:(
2、+)=+, (+)=+ 3. 向量共線定理 向量與非零向量共線的充要條件是:有且只有一個非零實數(shù),使=.二、講解新課:平面向量基本定理:如果,是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù)1,2使=1+2.探究:(1) 我們把不共線向量、叫做表示這一平面內(nèi)所有向量的一組基底;(2) 基底不惟一,關(guān)鍵是不共線;(3) 由定理可將任一向量a在給出基底、的條件下進行分解;(4) 基底給定時,分解形式惟一. 1,2是被,唯一確定的數(shù)量三、講解范例:例1 已知向量, 求作向量-2.5+3.例2 如圖 ABCD的兩條對角線交于點M,且=,=,用,表示,和 例3已知 ABCD的
3、兩條對角線AC與BD交于E,O是任意一點,求證:+=4例4(1)如圖,不共線,=t (tÎR)用,表示. (2)設(shè)不共線,點P在O、A、B所在的平面內(nèi),且.求證:A、B、P三點共線. 例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共線,向量c=2e1-9e2,問是否存在這樣的實數(shù)與c共線.四、課堂練習(xí):1.設(shè)e1、e2是同一平面內(nèi)的兩個向量,則有( )A.e1、e2一定平行 B.e1、e2的模相等C.同一平面內(nèi)的任一向量a都有a =e1+e2(、R)D.若e1、e2不共線,則同一平面內(nèi)的任一向量a都有a =e1+ue2(、uR)2.已知矢量a = e1-2e2
4、,b =2e1+e2,其中e1、e2不共線,則a+b與c =6e1-2e2的關(guān)系A(chǔ).不共線 B.共線 C.相等 D.無法確定3.已知向量e1、e2不共線,實數(shù)x、y滿足(3x-4y)e1+(2x-3y)e2=6e1+3e2,則x-y的值等于( )A.3 B.-3 C.0 D.24.已知a、b不共線,且c =1a+2b(1,2R),若c與b共線,則1= .5.已知10,20,e1、e2是一組基底,且a =1e1+2e2,則a與e1_,a與e2_(填共線或不共線).五、小結(jié)(略) 六、課后作業(yè)(略):七、板書設(shè)計(略)八、課后記: 第5課時§2.3.2§2.3.3 平面向量的正
5、交分解和坐標(biāo)表示及運算教學(xué)目的:(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運算;(3)會根據(jù)向量的坐標(biāo),判斷向量是否共線. 教學(xué)重點:平面向量的坐標(biāo)運算教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性.授課類型:新授課教 具:多媒體、實物投影儀教學(xué)過程:一、復(fù)習(xí)引入:1平面向量基本定理:如果,是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù)1,2使=1+2(1)我們把不共線向量、叫做表示這一平面內(nèi)所有向量的一組基底;(2)基底不惟一,關(guān)鍵是不共線;(3)由定理可將任一向量在給出基底、的條件下進行分解;(4)基底給定時,分解形式惟一. 1,2是被,唯一確定的
6、數(shù)量二、講解新課:1平面向量的坐標(biāo)表示 如圖,在直角坐標(biāo)系內(nèi),我們分別取與軸、軸方向相同的兩個單位向量、作為基底.任作一個向量,由平面向量基本定理知,有且只有一對實數(shù)、,使得我們把叫做向量的(直角)坐標(biāo),記作其中叫做在軸上的坐標(biāo),叫做在軸上的坐標(biāo),式叫做向量的坐標(biāo)表示.與相等的向量的坐標(biāo)也為.特別地,.如圖,在直角坐標(biāo)平面內(nèi),以原點O為起點作,則點的位置由唯一確定.設(shè),則向量的坐標(biāo)就是點的坐標(biāo);反過來,點的坐標(biāo)也就是向量的坐標(biāo).因此,在平面直角坐標(biāo)系內(nèi),每一個平面向量都是可以用一對實數(shù)唯一表示.2平面向量的坐標(biāo)運算(1) 若,則,兩個向量和與差的坐標(biāo)分別等于這兩個向量相應(yīng)坐標(biāo)的和與差.設(shè)基底為
7、、,則即,同理可得(2) 若,則一個向量的坐標(biāo)等于表示此向量的有向線段的終點坐標(biāo)減去始點的坐標(biāo).=-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1)(3)若和實數(shù),則.實數(shù)與向量的積的坐標(biāo)等于用這個實數(shù)乘原來向量的相應(yīng)坐標(biāo).設(shè)基底為、,則,即三、講解范例:例1 已知A(x1,y1),B(x2,y2),求的坐標(biāo).例2 已知=(2,1), =(-3,4),求+,-,3+4的坐標(biāo).例3 已知平面上三點的坐標(biāo)分別為A(-2, 1), B(-1, 3), C(3, 4),求點D的坐標(biāo)使這四點構(gòu)成平行四邊形四個頂點.解:當(dāng)平行四邊形為ABCD時,由得D1=(2, 2)當(dāng)平行四邊
8、形為ACDB時,得D2=(4, 6),當(dāng)平行四邊形為DACB時,得D3=(-6, 0)例4已知三個力 (3, 4), (2, -5), (x, y)的合力+=,求的坐標(biāo).解:由題設(shè)+= 得:(3, 4)+ (2, -5)+(x, y)=(0, 0)即: (-5,1)四、課堂練習(xí):1若M(3, -2) N(-5, -1) 且 , 求P點的坐標(biāo)2若A(0, 1), B(1, 2), C(3, 4) , 則-2= .3已知:四點A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求證:四邊形ABCD是梯形.五、小結(jié)(略) 六、課后作業(yè)(略)七、板書設(shè)計(略)八、課后記: 第6
9、課時§2.3.4 平面向量共線的坐標(biāo)表示教學(xué)目的:(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運算;(3)會根據(jù)向量的坐標(biāo),判斷向量是否共線. 教學(xué)重點:平面向量的坐標(biāo)運算教學(xué)難點:向量的坐標(biāo)表示的理解及運算的準(zhǔn)確性授課類型:新授課教 具:多媒體、實物投影儀教學(xué)過程:一、復(fù)習(xí)引入:1平面向量的坐標(biāo)表示分別取與軸、軸方向相同的兩個單位向量、作為基底.任作一個向量,由平面向量基本定理知,有且只有一對實數(shù)、,使得把叫做向量的(直角)坐標(biāo),記作其中叫做在軸上的坐標(biāo),叫做在軸上的坐標(biāo), 特別地,.2平面向量的坐標(biāo)運算若,則,.若,則二、講解新課: (¹)的充要條件是x1y
10、2-x2y1=0設(shè)=(x1, y1) ,=(x2, y2) 其中¹.由=得, (x1, y1) =(x2, y2) 消去,x1y2-x2y1=0探究:(1)消去時不能兩式相除,y1, y2有可能為0, ¹ x2, y2中至少有一個不為0(2)充要條件不能寫成 x1, x2有可能為0(3)從而向量共線的充要條件有兩種形式: (¹)三、講解范例:例1已知=(4,2),=(6, y),且,求y.例2已知A(-1, -1), B(1,3), C(2,5),試判斷A,B,C三點之間的位置關(guān)系.例3設(shè)點P是線段P1P2上的一點, P1、P2的坐標(biāo)分別是(x1,y1),(x2,
11、y2).(1) 當(dāng)點P是線段P1P2的中點時,求點P的坐標(biāo); (2) 當(dāng)點P是線段P1P2的一個三等分點時,求點P的坐標(biāo).例4若向量=(-1,x)與=(-x, 2)共線且方向相同,求x解:=(-1,x)與=(-x, 2) 共線 (-1)×2- x(-x)=0 x=± 與方向相同 x= 例5 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量與平行嗎?直線AB與平行于直線CD嗎? 解:=(1-(-1), 3-(-1)=(2, 4) , =(2-1,7-5)=(1,2) 又 2×2-4×1=0 又 =(1-(-1), 5-(-1)=(2,6) ,=(2, 4),2×4-2×6¹0 與不平行 A,B,C不共線 AB與CD不重合 ABCD四、課堂練習(xí):1.若a=(2,3),b=(4,-1+y),且ab,則y=( )A.6 B.5 C.7 D.82.若A(x,-1),B(1,3),C(2,5)三點共線,則x的值為( )A.-3 B.-1 C.1 D.33.若=i+2j, =(3-x)i+(4-y)j(其中i、j的方向分別與x、y軸正方向相同且為單位向量). 與共線,則x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同模板中央空調(diào)銷售合同范本
- 北京億歐網(wǎng)盟科技有限公司-新質(zhì)生產(chǎn)力系列:2025中國消費級AI硬件價值洞察及GEEK50榜單報告
- 2024年三年級道德與法治下冊 第四單元 多樣的交通和通信 11四通八達的交通第二課時說課稿 新人教版
- 2024年秋七年級地理上冊 第五章 世界的發(fā)展差異 5.2《國際經(jīng)濟合作》說課稿2 (新版)湘教版
- 9 古代科技 耀我中華(說課稿)2024-2025學(xué)年統(tǒng)編版道德與法治五年級上冊
- 養(yǎng)殖設(shè)備銷售合同范例
- 2024年一年級道德與法治上冊 第16課 我有一雙明亮的眼睛說課稿 未來版
- 9 種豆子 說課稿-2023-2024學(xué)年科學(xué)二年級下冊冀人版
- 出售電廠鍋爐合同范例
- 人員轉(zhuǎn)公司合同范例
- 旅游定制師入行培訓(xùn)方案
- 奧數(shù)培訓(xùn)班課件
- 2022煤礦安全規(guī)程解讀課件
- 2024年中國南方航空股份有限公司招聘筆試參考題庫含答案解析
- 六年級上冊數(shù)學(xué)應(yīng)用題100題
- 個人代賣協(xié)議
- 賞析小說語言(二)
- 【立高食品公司的償債能力現(xiàn)狀及問題分析(論文9000字)】
- 10.《運動技能學(xué)習(xí)與控制》李強
- 冀教版數(shù)學(xué)七年級下冊綜合訓(xùn)練100題含答案
- 農(nóng)電公司績效考核管理辦法
評論
0/150
提交評論