![中考數(shù)學(xué)重難點專題講座 第二講 圖形位置關(guān)系(含答案)_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/16/c0860fa9-cbeb-40ca-9503-e81069197198/c0860fa9-cbeb-40ca-9503-e810691971981.gif)
![中考數(shù)學(xué)重難點專題講座 第二講 圖形位置關(guān)系(含答案)_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/16/c0860fa9-cbeb-40ca-9503-e81069197198/c0860fa9-cbeb-40ca-9503-e810691971982.gif)
![中考數(shù)學(xué)重難點專題講座 第二講 圖形位置關(guān)系(含答案)_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/16/c0860fa9-cbeb-40ca-9503-e81069197198/c0860fa9-cbeb-40ca-9503-e810691971983.gif)
![中考數(shù)學(xué)重難點專題講座 第二講 圖形位置關(guān)系(含答案)_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/16/c0860fa9-cbeb-40ca-9503-e81069197198/c0860fa9-cbeb-40ca-9503-e810691971984.gif)
![中考數(shù)學(xué)重難點專題講座 第二講 圖形位置關(guān)系(含答案)_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/16/c0860fa9-cbeb-40ca-9503-e81069197198/c0860fa9-cbeb-40ca-9503-e810691971985.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、中考數(shù)學(xué)重難點專題講座第二講圖形位置關(guān)系【前言】在中學(xué)數(shù)學(xué)當(dāng)中,圖形位置關(guān)系主要包括點、線、三角形、矩形/正方形以及圓這么幾類圖形之間的關(guān)系。在中考中會包含在函數(shù),坐標(biāo)系以及幾何問題當(dāng)中,但主要還是通過圓與其他圖形的關(guān)系來考察,這其中最重要的就是圓與三角形的各種問題。綜合整個2010一模來看,18套題中有17套都是很明確的采用圓與三角形問題的一證一算方式來考察。這個信息告訴我們中考中這一類題幾乎必考。由于此類題目基本都是上檔次解答題的第二道,緊隨線段角計算之后,難度一般中等偏上。所以如何將此題分數(shù)盡攬懷中就成為了每個考生與家長不得不重視的問題。從題目本身來看,一般都是采取很標(biāo)準的兩問式.第一問
2、證明切線,考察切線判定定理以及切線性質(zhì)定理及推論,第二問通常會給定一線段長度和一角的三角函數(shù)值,求其他線段長,綜合考察圓與三角形的知識點。一模尚且如此,中考也不會差的太遠。至于其他圖形位置關(guān)系,我們將會在后面的專題中涉及到.所以本講筆者將從一模真題出發(fā),總結(jié)關(guān)于圓的問題的一般思路與解法。第一部分真題精講【例1】(2010,豐臺,一模已知:如圖,AB為O的直徑,O過AC的中點D,DEBC于點E.(1求證:DE為O的切線;,求O的直徑.(2若DE=2,tan C=12 A【思路分析】本題和大興的那道圓題如出一轍,只不過這兩個題的三角形一個是躺著一個是立著,讓人懷疑他們是不是串通好了近年來此類問題特
3、別愛將中點問題放進去一并考察,考生一定要對中點以及中位線所引發(fā)的平行等關(guān)系非常敏感,尤其不要忘記圓心也是直徑的中點這一性質(zhì)。對于此題來說,自然連接OD,在ABC中OD就是中位線,平行于BC。所以利用垂直傳遞關(guān)系可證ODDE。至于第二問則重點考察直徑所對圓周角是90°這一知識點。利用垂直平分關(guān)系得出ABC是等腰三角形,從而將求AB轉(zhuǎn)化為求BD,從而將圓問題轉(zhuǎn)化成解直角三角形的問題就可以輕松得解。【解析】(1證明:聯(lián)結(jié)OD. D為AC中點, O為AB中點, A OD為ABC的中位線.ODBC. DEBC,DEC=90°.ODE=DEC=90°. ODDE于點D. DE
4、為O的切線.(2解:聯(lián)結(jié)DB.AB為O的直徑,ADB=90°.DBAC.CDB=90°. D為AC中點,AB=AC.在RtDEC中,DE=2 ,tanC=12,EC=4tanD EC=. (三角函數(shù)的意義要記牢 由勾股定理得:DC= 在RtDCB 中, BD=tanDC C= BC=5.AB=BC=5.O的直徑為5.【例2】(2010,海淀,一模已知:如圖,O為A B C的外接圓,BC為O的直徑,作射線BF,使得BA平分C B F,過點A作AD BF于點D.(1求證:DA為O的切線;(2若1BD=,1tan2BAD=,求O的半徑. FC【思路分析】本題是一道典型的用角來證切
5、線的題目。題目中除垂直關(guān)系給定以外,就只給了一條BA平分CBF??吹竭@種條件,就需要大家意識到應(yīng)該通過角度來證平行。用角度來證平行無外乎也就內(nèi)錯角同位角相等,同旁內(nèi)角互補這么幾種。本題中,連OA之后發(fā)現(xiàn)ABD=ABC,而OAB構(gòu)成一個等腰三角形從而ABO=BAO,自然想到傳遞這幾個角之間的關(guān)系,從而得證。第二問依然是要用角的傳遞,將已知角BAD通過等量關(guān)系放在ABC 中,從而達到計算直徑或半徑的目的。 【解析】證明:連接A O .FC AO BO =, 23=. BA CBF 平分, 12=. 31= . DB A O . (得分點,一定不能忘記用內(nèi)錯角相等來證平行 AD DB , 90BD
6、A =. 90D AO =. A O 是O 半徑, DA 為O 的切線. (2 AD DB ,1BD =,1tan 2BAD =, 2AD =.由勾股定理,得 AB = sin 45=.(通過三角函數(shù)的轉(zhuǎn)換來擴大已知條件 BC 是O 直徑, 90BAC =. 290C +=. 又 4190+=, 21=, 4C =. (這一步也可以用三角形相似直接推出BD/AB=AB/AC=sin BAD 在Rt ABC 中,sin AB BC C=sin 4AB =5. O 的半徑為52.【例3】(2010,昌平,一模已知:如圖,點D 是O 的直徑C A 延長線上一點,點B在O 上,且.OA AB AD =
7、 (1求證:BD 是O 的切線;(2若點E 是劣弧BC 上一點,AE 與BC 相交 于點F ,且8B E =,tan 2B F A = 求O 的半徑長.【思路分析】 此題條件中有OA=AB=OD ,聰明的同學(xué)瞬間就能看出來BA 其實就是三角形OBD 中斜邊OD 上的中線。那么根據(jù)直角三角形斜邊中線等于斜邊一半這一定理的逆定理,馬上可以反推出OBD=90°,于是切線問題迎刃而解。事實上如果看不出來,那么連接OB 以后像例2那樣用角度傳遞也是可以做的。本題第二問則稍有難度,額外考察了有關(guān)圓周角的若干性質(zhì)。利用圓周角相等去證明三角形相似,從而將未知條件用比例關(guān)系與已知條件聯(lián)系起來。近年來中
8、考范圍壓縮,圓冪定理等綱外內(nèi)容已經(jīng)基本不做要求,所以更多的都是利用相似三角形中借助比例來計算,希望大家認真掌握?!窘馕觥?1證明:連接O B .,OA AB OA OB =, O A AB O B =.A B O 是等邊三角形. 160BAO =. AB AD =,230D =.1290+=.D B BO . (不用斜邊中線逆定理的話就這樣解,麻煩一點而已 又點B 在O 上, DB 是O 的切線 .(2解:C A 是O 的直徑, 90ABC =.在R t ABF 中,tan 2AB BFA BF=, 設(shè),AB =則2BF x =, 3AF x = . 23BF AF= . (設(shè)元的思想很重要,
9、34C E =, BFE A F C . 23BE BF ACAF= .CC8B E=,12AC= .6AO=.5分【例4】(2010,密云,一模如圖,等腰三角形ABC中,6交AB于點D,交A B=.以BC為直徑作OAC BC=,8,垂足為F,交C B的延長線于點E.A C于點G,D F AC(1求證:直線EF是O的切線;(2求sin E的值. 【思路分析】本題和前面略有不同的地方就是通過線段的具體長度來計算和證明。欲證EF 是切線,則需證OD垂直于EF,但是本題中并未給OD和其他線角之間的關(guān)系,所以就需要多做一條輔助線連接CD,利用直徑的圓周角是90°,并且ABC是以AC,CB為腰
10、的等腰三角形,從而得出D是中點。成功轉(zhuǎn)化為前面的中點問題,繼而求解。第二問利用第一問的結(jié)果,轉(zhuǎn)移已知角度,借助勾股定理,在相似的RT三角形當(dāng)中構(gòu)造代數(shù)關(guān)系,通過解方程的形式求解,也考察了考生對于解三角形的功夫。【解析】AFDGEOCB(1證明:如圖,連結(jié)C D,則90=.BD CC D AB. AC BC=,AD BD=.D是AB的中點.O是BC的中點,D O AC.EF AC于F.EF D O.EF是O的切線.( 2 連結(jié)B G,BC是直徑, 90=.(直徑的圓周角都是90°BG C C FEBG EF . sin FC CGE ECBC=.設(shè)C G x =,則6AG x =-.在
11、R t BG A 中,222BG BC CG =-. 在R t BG C 中,222BG AB AG =-.(這一步至關(guān)重要,利用兩相鄰RT 的臨邊構(gòu)建等式,事實上也可以直接用直角三角形斜邊高分比例的方法 (2222686x x -=-.解得23x =.即23C G =.在R t BG C 中. 213sin 69C GE BC =.【例5】2010,通州,一模如圖,平行四邊形ABCD 中,以A 為圓心,AB 為半徑的圓交AD 于F ,交BC 于G ,延長BA 交圓于E .(1若ED 與A 相切,試判斷GD 與A 的位置關(guān)系,并證明你的結(jié)論; (2在(1的條件不變的情況下,若GC =CD =5
12、,求AD 的長.G FEDCBA【思路分析】本題雖然是圓和平行四邊形的位置關(guān)系問題,但是依然考察的是如何將所有條件放在最基本的三角形中求解的能力。判斷出DG 與圓相切不難,難點在于如何證明。事實上,除本題以外,門頭溝,石景山和宣武都考察了圓外一點引兩條切線的證明。這類題目最重要是利用圓半徑相等以及兩個圓心角相等來證明三角形相似。第二問則不難,重點在于如何利用角度的倍分關(guān)系來判斷直角三角形中的特殊角度,從而求解。【解析】(1結(jié)論:G D 與O 相切654321GF EDCBA證明:連接A G 點G 、E 在圓上,AG AE = 四邊形ABC D 是平行四邊形, AD BC 123B =,AB A
13、G = 3B = 12= (做多了就會發(fā)現(xiàn),基本此類問題都是要找這一對角,所以考生要善于把握已知條件往這個上面引在AED 和AG D 12AE AG AD AD =AED AG D AED AG D = ED 與A 相切 90AED = 90AG D = AG D G G D 與A 相切 (25G C C D =,四邊形ABC D 是平行四邊形 AB D C =,45=,5AB AG = AD BC 46= 1562B=226= (很多同學(xué)覺得題中沒有給出特殊角度,于是無從下手,其實用倍分關(guān)系放在RT 三角形中就產(chǎn)生了30°和60°的特殊角 630= 10AD = .【總結(jié)
14、】 經(jīng)過以上五道一模真題,我們可以得出這類題型的一般解題思路。要證相切,做輔助線連接圓心與切點自不必說,接下來就要考慮如何將半徑證明為是圓心到切線的距離,即“連半徑,證垂直”。近年來中考基本只要求了這一種證明切線的思路,但是事實上證明切線有三種方式。為以防遇到,還是希望考生能有所了解。第一種就是課本上所講的先連半徑,再證垂直。這樣的前提是題目中所給條件已經(jīng)暗含了半徑在其中。例如圓外接三角形,或者圓與線段交點這樣的。把握好各種圓的性質(zhì)關(guān)系就可以了。第二種是在題目沒有給出交點狀況的情況下,不能貿(mào)然連接,于是可以先做垂線,然后通過證明垂線等于半徑即可,就是所謂的“先證垂直后證半徑”。例如大家看這樣一
15、道題,如圖ABC中,AB=AC,點O是BC的中點,與AB切于點D,求證:與AC也相切。 該題中圓0與AC是否有公共點是未知的,所以只能通過O做AC的垂線,然后證明這個距離剛好就是圓半徑。如果考生想當(dāng)然認為有一個交點,然后直接連AC與圓交點這樣證明,就誤入歧途了。第三種是比較棘手的一種,一方面題目中并未給出半徑,也未給出垂直關(guān)系,所以屬于半徑和垂直都要證明的題型。例如看下面一道題: 如圖,中,AB=AC,=,O、D將BC三等分,以O(shè)B為圓心畫,求證:與AC相切。 本題中并未說明一定過A點,所以需要證明A是切點,同時還要證明O到AC垂線的垂足和A是重合的,這樣一來就非常麻煩。但是換個角度想,如果連
16、接AO之后再證明AO=OB,AOAC,那么就非常嚴密了。(提示:做垂線,那么垂足同時也是中點,通過數(shù)量關(guān)系將AO,BO都用AB表示出來即可證明相等,而AOC中利用直角三角形斜邊中線長是斜邊一半的逆定理可以證出直角。至于本類題型中第二問的計算就比較簡單了,把握好圓周角,圓心角,以及可能出現(xiàn)的弦切角所構(gòu)成的線段,角關(guān)系,同時將條件放在同一個RT當(dāng)中就可以非常方便的求解??傊?此類題目難度不會太大,所以需要大家做題速度快,準確率高,為后面的代幾綜合體留出空間。第二部分 發(fā)散思考【思考1】(2009,海淀,一模如圖,已知AB 為O 的弦,C 為O 上一點,C =BAD ,且BD AB 于B . (1求
17、證:AD 是O 的切線; (2若O 的半徑為3,AB =4,求AD 的長.【思路分析】此題為去年海淀一模題,雖然較為簡單,但是統(tǒng)計下來得分率卻很低. 因為題目中沒有給出有關(guān)圓心的任何線段,所以就需要考生自己去構(gòu)造。同一段弧的圓周角相等這一性質(zhì)是非常重要的,延長DB 就會得到一個和C 一樣的圓周角,利用角度關(guān)系,就很容易證明了。第二問考解三角形的計算問題,利用相等的角建立相等的比例關(guān)系,從而求解。 (解法見后【思考2】2009,西城,一模 已知:如圖,AB 為O 的弦,過點O 作AB 的平行線,交 O 于點C ,直線OC 上一點D 滿足D =ACB . (1判斷直線BD 與O 的位置關(guān)系,并證明
18、你的結(jié)論; (2若O 的半徑等于4,4tan 3ACB =,求CD 的長.【思路分析】本題也是非常典型的通過角度變換來證明90°的題目。重點在于如何利用D=ACB 這個條件,去將他們放在RT 三角形中找出相等,互余等關(guān)系。尤其是將OBD 拆分成兩個角去證明和為90°。 (解法見后【思考3】2009,北京已知:如圖,在ABC 中,AB=AC,AE 是角平分線,BM 平分ABC 交AE 于點M,經(jīng)過B,M 兩點的O 交BC 于點G,交AB 于點F,FB 恰為O 的直徑. (1求證:AE 與O 相切; (2當(dāng)BC=4,cosC=13時,求O 的半徑. 【思路分析】這是一道去年北京中考的原題,有些同學(xué)可能已經(jīng)做過了。主要考點還是切線判定,等腰三角形性質(zhì)以及解直角三角形,也不會很難。放這里的原因是讓大家感受一下中考題也無非就是如此出法,和我們前面看到的那些題是一個意思?!舅伎?】2009,西城,二模如圖,等腰ABC 中,AC=BC ,O 為ABC 的外接圓,D 為 BC 上一點, CE AD 于E . 求證:AE= BD +DE .【思路分析】 前面的題目大多是有關(guān)切線問題,但是未必所有的圓問題都和切線有關(guān),去年西城區(qū)這道模擬題就是無切線問題的代表。此題的關(guān)鍵在于如何在圖形中找到和BD相等的量來達到轉(zhuǎn)化的目的。如果圖形中所有線段現(xiàn)成的沒有,那么就需要自
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度環(huán)保運輸公司大車司機招聘合同
- 2025年度物業(yè)小區(qū)廣告運營與社區(qū)經(jīng)濟提升合同
- 2025年度智能化住宅電梯使用與服務(wù)保障合同
- 2025年擔(dān)保合同范例規(guī)范標(biāo)準
- 2025年倉庫貨物識別租賃合同
- 出口貿(mào)易合同簽署的基本流程
- 2025年阿膠酒行業(yè)深度研究分析報告
- 2024-2026年中國云對象存儲行業(yè)市場全景調(diào)研及投資規(guī)劃建議報告
- 2025-2030年中國糠酸莫米松行業(yè)應(yīng)用態(tài)勢及需求趨勢預(yù)測研究報告
- 2024-2029年中國路由器行業(yè)市場前瞻與投資戰(zhàn)略規(guī)劃分析報告
- 2024-2025學(xué)年北京市豐臺區(qū)高三語文上學(xué)期期末試卷及答案解析
- 公路電子收費系統(tǒng)安裝合同范本
- 2021年全國高考物理真題試卷及解析(全國已卷)
- 建設(shè)用地土壤污染風(fēng)險評估技術(shù)導(dǎo)則(HJ 25.3-2019代替HJ 25.3-2014)
- JJG 692-2010無創(chuàng)自動測量血壓計
- 徐州市2023-2024學(xué)年八年級上學(xué)期期末地理試卷(含答案解析)
- 飲料對人體的危害1
- 數(shù)字經(jīng)濟學(xué)導(dǎo)論-全套課件
- 中考記敘文閱讀
- 產(chǎn)科溝通模板
- 2023-2024學(xué)年四川省成都市小學(xué)數(shù)學(xué)一年級下冊期末提升試題
評論
0/150
提交評論