人教A版高中數(shù)學(xué)選修二項(xiàng)式定理教案_第1頁(yè)
人教A版高中數(shù)學(xué)選修二項(xiàng)式定理教案_第2頁(yè)
人教A版高中數(shù)學(xué)選修二項(xiàng)式定理教案_第3頁(yè)
人教A版高中數(shù)學(xué)選修二項(xiàng)式定理教案_第4頁(yè)
人教A版高中數(shù)學(xué)選修二項(xiàng)式定理教案_第5頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余2頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、凡事豫(預(yù))則立,不豫(預(yù))則廢高中數(shù)學(xué)二項(xiàng)式定理教學(xué)設(shè)計(jì)【教學(xué)設(shè)計(jì)思想】教學(xué)設(shè)計(jì)思想現(xiàn)代教學(xué)的核心是“以學(xué)生的發(fā)展為本”,注重學(xué)生的學(xué)習(xí)狀態(tài)和情感體驗(yàn),注重教學(xué)過(guò)程中學(xué)生主體地位的體現(xiàn)和主體作用的發(fā)揮,強(qiáng)調(diào)尊重學(xué)生人格和個(gè)性,鼓勵(lì)發(fā)現(xiàn)、探究與質(zhì)疑,鼓勵(lì)培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.二項(xiàng)式定理這部分內(nèi)容比較枯燥, 如何發(fā)揮學(xué)生的主體作用, 使學(xué)生自己探究學(xué)習(xí)知識(shí)、 建構(gòu)知識(shí)網(wǎng)絡(luò),是本節(jié)課教學(xué)設(shè)計(jì)的核心.我采用啟發(fā)探究式教學(xué)方式:一是從實(shí)際應(yīng)用問題引入課題。這里體現(xiàn)了新課程的數(shù)學(xué)應(yīng)用意識(shí)的理念,使學(xué)生體會(huì)到數(shù)學(xué)不僅是為了學(xué)數(shù)學(xué),還可以學(xué)以致用,用來(lái)解決現(xiàn)實(shí)生活的問題.二是從特殊到一般。面對(duì)一般問

2、題,學(xué)生會(huì)想到從特殊情況入手, 讓學(xué)生自己探究n=1, 2, 3, 4,時(shí)二項(xiàng)展開式的規(guī)律,觀察發(fā)現(xiàn)二項(xiàng)式定理的基本內(nèi)容.三是采用小組合作、 探究的方式。小組內(nèi)的同學(xué)共同歸納二項(xiàng)式定理的內(nèi)容,由特殊推廣到一般.四是教師的啟發(fā)與學(xué)生的探究恰當(dāng)結(jié)合。本節(jié)課的難點(diǎn)在于確定二項(xiàng)展開式中,每一項(xiàng)的二項(xiàng)式系數(shù),對(duì)于平行班的學(xué)生,真正能獨(dú)立歸納出來(lái),有一定的困難,教師在此時(shí)的引 導(dǎo)啟發(fā),就顯得尤為重要.本節(jié)課,學(xué)生通過(guò)對(duì) n=1, 2, 3, 4,時(shí)二項(xiàng)展開式的觀察,歸納、猜想到 n為任意 正整數(shù)時(shí)的二項(xiàng)式定理內(nèi)容,并真正理解二項(xiàng)式系數(shù)的意義。這樣設(shè)計(jì)的目的是為了讓學(xué)生參與知識(shí)的發(fā)生、發(fā)展、深化的過(guò)程,學(xué)習(xí)

3、體會(huì)應(yīng)用“觀察、歸納、猜想、證明”的科學(xué)思 維方法的過(guò)程,提高數(shù)學(xué)修養(yǎng).本節(jié)課對(duì)二項(xiàng)式定理特點(diǎn)及規(guī)律的總結(jié)和歸納,有利于學(xué)生對(duì)二項(xiàng)式定理的識(shí)記,同時(shí)還可以使學(xué)生體驗(yàn)數(shù)學(xué)公式的對(duì)稱美、和諧美.學(xué)生情況分析學(xué)生為平行班學(xué)生, 有一定的數(shù)學(xué)基礎(chǔ). 學(xué)生理解組合及組合數(shù)的概念,掌握了多項(xiàng)式乘法的運(yùn)算法則,有一定的歸納猜想能力,能順利完成課時(shí)計(jì)劃內(nèi)容.學(xué)生有過(guò)探究、交流的課堂教學(xué)的嘗試.教學(xué)流程框圖教學(xué)診斷分析在本節(jié)內(nèi)容的學(xué)習(xí)中,學(xué)生容易了解的內(nèi)容是二項(xiàng)展開式的項(xiàng)數(shù)、指數(shù)和系數(shù)的規(guī)律,即項(xiàng)數(shù):n 1項(xiàng);指數(shù):字母a, b的指數(shù)和為n ,字母a的指數(shù)由n遞減至0,同時(shí),字 母b的指數(shù)由0遞增至n ;二項(xiàng)式

4、系數(shù):下標(biāo)為 n ,上標(biāo)由0遞增至n ;容易產(chǎn)生誤解的內(nèi)容是:通項(xiàng) Tr 1 C;an rbr指的是第r+1項(xiàng);通項(xiàng)的二項(xiàng)式系數(shù)是_ r . .Cn ,與該項(xiàng)的系數(shù)是不同的概念(在第二課時(shí)會(huì)進(jìn)行探討)。【教學(xué)方式及預(yù)期效果分析】本節(jié)課采用啟發(fā)探究式教學(xué).通過(guò)學(xué)生小組合作交流、 師生對(duì)話交流等方式, 引導(dǎo)學(xué)生自主探究,合作交流.1 .課前準(zhǔn)備工作為便于管理和探究,將學(xué)生隨機(jī)分組,每組3-4人左右.2 .課堂探究過(guò)程探究?jī)?nèi)容為二項(xiàng)式定理的內(nèi)涵,包括項(xiàng)數(shù)、指數(shù)、系數(shù)等方面的規(guī)律內(nèi)容.采用小組內(nèi)合作探究方式,組間交流、置疑、點(diǎn)評(píng).組內(nèi)探究要求有分工,有合作,有交流.并推選交流發(fā)言代表.在探究過(guò)程中,學(xué)

5、生和組內(nèi)其他同學(xué)進(jìn)行探討和辯論,通過(guò)不同觀點(diǎn)的交鋒來(lái)補(bǔ)充、修正或加深自己對(duì)當(dāng)前問題的理解,從而完善自己的研究成果.3 .課堂交流過(guò)程(1)小組匯報(bào)小組內(nèi)推選匯報(bào)交流發(fā)言代表,其他同學(xué)自由補(bǔ)充.(2)組間置疑小組匯報(bào)后,對(duì)不同意見或不清楚的地方,提出置疑.(3)師生點(diǎn)評(píng)對(duì)匯報(bào)展示與置疑的同學(xué)進(jìn)行點(diǎn)評(píng),及時(shí)鼓勵(lì)、表?yè)P(yáng),保持學(xué)生學(xué)習(xí)熱情,通過(guò)交流, 學(xué)習(xí)他人的研究成果,充實(shí)自己.(4)教師引導(dǎo)對(duì)部分內(nèi)容,如二項(xiàng)式系數(shù)的確定,教師適時(shí),適度引導(dǎo).4.預(yù)期效果分析:通過(guò)本節(jié)課的學(xué)習(xí),在知識(shí)面上,期望學(xué)生能夠理解二項(xiàng)式定理及 其推導(dǎo)方法,識(shí)記二項(xiàng)展開式的有關(guān)特征,能對(duì)二項(xiàng)式定理進(jìn)行簡(jiǎn)單應(yīng)用;在思想和能力面

6、上,期望通過(guò)教師指導(dǎo)下的探究活動(dòng),使學(xué)生經(jīng)歷數(shù)學(xué)思維過(guò)程,熟悉理解“觀察一歸納一 猜想一證明”的思維方法,培養(yǎng)合作的意識(shí),獲得學(xué)習(xí)和成功的體驗(yàn);通過(guò)對(duì)二項(xiàng)式定理內(nèi) 容的研究,使學(xué)生體驗(yàn)特殊到一般發(fā)現(xiàn)規(guī)律,一般到特殊指導(dǎo)實(shí)踐的認(rèn)識(shí)事物過(guò)程,通過(guò)對(duì)二項(xiàng)展開式結(jié)構(gòu)特點(diǎn)的觀察,使學(xué)生體驗(yàn)數(shù)學(xué)公式的對(duì)稱美、和諧美.【教學(xué)目標(biāo)與教學(xué)內(nèi)容】本節(jié)課時(shí)高中數(shù)學(xué)第二冊(cè)(下 A 10. 4二項(xiàng)式定理第一節(jié)課.本節(jié)課的學(xué)生起點(diǎn):學(xué)生已經(jīng)學(xué)習(xí)了組合的基本知識(shí),初中學(xué)習(xí)了多項(xiàng)式乘法.本節(jié)課是在組合和多項(xiàng)式乘法的基礎(chǔ)上,進(jìn)一步研究學(xué)習(xí)二項(xiàng)式定理的內(nèi)容.這一內(nèi)容我共安排兩課時(shí),這是第一課時(shí).1 .教材分析:二項(xiàng)式定理是初中學(xué)

7、習(xí)的多項(xiàng)式乘法的繼續(xù),上所研究的是一種特殊的多項(xiàng)式一一二項(xiàng)式的乘方的展開式.這一小節(jié)與很多內(nèi)容都有著密切的聯(lián)系,特別是它在本章的學(xué)習(xí)中起著乘上啟下的作用.學(xué)習(xí)本小節(jié)的意義在于:二項(xiàng)式定理與概率理論中的三大概率分布之一 的二項(xiàng)分布有其內(nèi)在聯(lián)系,本小節(jié)是學(xué)習(xí)概率知識(shí)及概率統(tǒng)計(jì)的準(zhǔn)備知識(shí);二項(xiàng)式系數(shù)都是一些特殊的組合數(shù),利用二項(xiàng)式定理可以得到關(guān)于組合數(shù)的一些恒等式,從而深化對(duì)組合數(shù)的認(rèn)識(shí);基于二項(xiàng)展開式與多項(xiàng)式乘法的聯(lián)系,本小節(jié)的學(xué)習(xí)可對(duì)初中學(xué)習(xí)的多項(xiàng)式的變形起到復(fù)習(xí)、深化的作用;二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問題的一種方法.教材的安排:教材中是通過(guò) n取一些特殊值(1,2, 3, 4)的基

8、礎(chǔ)上,觀察歸納出二項(xiàng) 式定理,強(qiáng)調(diào)要分析清楚式子展開并進(jìn)行同類項(xiàng)合并后有哪些項(xiàng)及各項(xiàng)系數(shù)的一些規(guī)律,教材采用的是不完全歸納法, 沒有進(jìn)行嚴(yán)謹(jǐn)?shù)淖C明. 教材隨后安排了四道例題, 是對(duì)二項(xiàng)式定 理的簡(jiǎn)單應(yīng)用.重點(diǎn):二項(xiàng)式定理的內(nèi)容及應(yīng)用難點(diǎn):二項(xiàng)式定理的推導(dǎo)過(guò)程及內(nèi)涵2 .內(nèi)容分析:(a b)n Cnan Cnan1b Cnan 2b2C;an rbrC:bn (n N*)對(duì)二項(xiàng)式定理的理解和掌握,要從項(xiàng)數(shù)、系數(shù)、指數(shù)、通項(xiàng)等方面的特征去熟悉它的展 開式.3 .教學(xué)目標(biāo):知識(shí)技能:理解二項(xiàng)式定理及其推導(dǎo)方法,識(shí)記二項(xiàng)展開式的有關(guān)特征,能對(duì)二項(xiàng)式定理進(jìn)行簡(jiǎn)單應(yīng)用.過(guò)程方法:通過(guò)教師指導(dǎo)下的探究活動(dòng),

9、經(jīng)歷數(shù)學(xué)思維過(guò)程,熟悉理解“觀察一歸納一 猜想一證明”的思維方法,養(yǎng)成合作的意識(shí),獲得學(xué)習(xí)和成功的體驗(yàn).情感、態(tài)度和價(jià)值觀:通過(guò)對(duì)二項(xiàng)式定理內(nèi)容的研究,體驗(yàn)特殊到一般發(fā)現(xiàn)規(guī)律,一般到特殊指導(dǎo)實(shí)踐的認(rèn)識(shí)事物過(guò)程;通過(guò)對(duì)二項(xiàng)展開式結(jié)構(gòu)特點(diǎn)的觀察,體驗(yàn)數(shù)學(xué)公式的對(duì)稱美、和諧美.4 .教學(xué)過(guò)程一、設(shè)置情境,引入課題問題 某人投資10萬(wàn)元,有兩種獲利的可能供選擇. 一種是年利率12%,按單利計(jì)算, 10年后收回本金和利息.另一種年利率 10%,按每年復(fù)利一次計(jì)算,10年后收回本金和利 息.試問,哪一種投資更有利?分析:本金10萬(wàn)元,年利率12%,按單利計(jì)算,10年后的本利和是10X ( 1 + 12%X

10、 10) = 22 (萬(wàn)元)本金10萬(wàn)元,年利率10%,按每年復(fù)利一次計(jì)算,10年后的本利和是_1010 (1 10%)那么如何計(jì)算(1 10%)10的值呢?能否在不借助計(jì)算器的情況下,快速、準(zhǔn)確地求出其近似值呢?這就得研究形如(a b)n的展開式.二、探索研究二項(xiàng)式定理的內(nèi)容問題:(a b)n的展開式有什么特點(diǎn)?你能將它展開嗎?試一試.學(xué)生分組探究學(xué)生可能的探究方法 1:由(a b)1 a b C10a C1b(a b)2 a2 2ab b2 C2a2 C2ab C2b2(a b)3a33a2b 3ab2b3 C;a3C;a2bC;ab2 C;b34432, 23 4 八0 4c1 32 2

11、,2 八3 ,3 八4一4(a b)a4ab6ab4ab bC4aC4a b C4a bC4abC4 b學(xué)生可能通過(guò)具體的例子來(lái)展開說(shuō)明,如:(a b)3 a3 3a2b 3ab2 b3或(a b)4 a4 4a3b 6a2b2 4ab3 b4學(xué)生歸納過(guò)程可能如下:以(a b)4為例的展開式的分析過(guò)程:(a b)4 (a b)(a b)(a b)(a b) a4 4a 3b 6a2b2 4ab3 b4容易看到,等號(hào)右邊的積的展開式的每一項(xiàng),是從每個(gè)括號(hào)里任取一個(gè)字母的乘積,因而各項(xiàng)都是4次式,即展開式應(yīng)有下面形式的各項(xiàng):a4,a3b,a2b2,ab3,b4.學(xué)生可能歸納出來(lái):(1)每一項(xiàng)中字母

12、a , b的指數(shù)之間的關(guān)系(2)項(xiàng)的個(gè)數(shù)有n 1 項(xiàng)在上面4個(gè)括號(hào)中:每個(gè)都不取b的情況有1種,即C4種,所以a4的系數(shù)是C:;恰有1個(gè)取b的情況下有C4種,所以a3b的系數(shù)是C4 ;恰有2個(gè)取b的情況下有c2種,所以a2b2的系數(shù)是C2 ;恰有3個(gè)取b的情況下有c4種,所以ab3的系數(shù)是c4 ;4 一 - 444個(gè)都取b的情況下有C4種,所以b的系數(shù)是C4;因此(a b)4 C0a4 C4a3b C4a2b2 c3ab3 c4b4.歸納、猜想(a b)n ?(a b)n C:an C;an1b C:an 2b2C;an rbrC:bn (n N*)教師根據(jù)情況進(jìn)行指導(dǎo)和引導(dǎo),尤其是各項(xiàng)二項(xiàng)式

13、系數(shù)的確定,教師要從各項(xiàng)中a , b指數(shù)的含義如a4,a3b來(lái)引導(dǎo),并要求學(xué)生說(shuō)明怎么得到這些項(xiàng)?教師可以通過(guò)電腦演示各 形式項(xiàng)的形成過(guò)程,將學(xué)生的思維過(guò)程展示.學(xué)生可能的探究方法 2:(a b)n (a b)(a b)(a b) (a b),共n個(gè)(a b),依據(jù)多項(xiàng)式乘法,直接寫 出各項(xiàng).學(xué)生成果展示,可通過(guò)具體實(shí)例:通過(guò)投影、板書或口述 問題:希望學(xué)生得到的規(guī)律(1) 項(xiàng)數(shù):n 1項(xiàng);(2) 指數(shù):字母a , b的指數(shù)和為n ,字母a的指數(shù)由n遞減至0,同時(shí),字母b的指數(shù)由0遞增至n ;(3)二項(xiàng)式系數(shù)是 C0,Cn,C2, ,C; ,Cn(4) 通項(xiàng):Tr 1 C:an rbr板書(1

14、), (2)規(guī)律(3)得到后,板書(a b)n_an _an 1b_an rbr_bn規(guī)律(4)得到后,補(bǔ)全二項(xiàng)式定理板書教師引導(dǎo)中,可能用到的引導(dǎo)問題:(1) 將(a b)n展開,有多少項(xiàng)?(2) 每一項(xiàng)中,字母a, b的指數(shù)有什么特點(diǎn)?(3) 字母a , b的指數(shù)的含義是什么?是怎樣得到的?(4) 如何確定an rbr的系數(shù)?教師引導(dǎo)學(xué)生觀察二項(xiàng)式定理,從以下幾方面強(qiáng)調(diào):(1) 項(xiàng)數(shù):n 1項(xiàng);(2) 指數(shù):字母a , b的指數(shù)和為n ,字母a的指數(shù)由n遞減至0,同時(shí),字母b的指數(shù)由0遞增至n;(3) 二項(xiàng)式系數(shù):下標(biāo)為 n ,上標(biāo)由0遞增至n ;(4) 通項(xiàng):Tr 1 C;an rbr指

15、的是第r+1項(xiàng),該項(xiàng)的二項(xiàng)式系數(shù)是 Cnr(5) 公式所表示的定理叫做二項(xiàng)式定理,右邊的多項(xiàng)式叫做(a b)n的二項(xiàng)展開式,上面的定理是用不完全歸納法得到的,將來(lái)可以用數(shù)學(xué)歸納法進(jìn)行嚴(yán)格證明.、二項(xiàng)式定理的應(yīng)用1 .解決本節(jié)課開始提出的問題.解:10(1 10%)10 10(1 0.1)1010(1 C10 0.1 C20 0.12)24.5由此可見,按年利率10%每年復(fù)利一次計(jì)算的要比年利率12%單利計(jì)算更有利,10年后多得利息2.5萬(wàn)兀.備選例題一_42 .展開(1 2x)40 401 312 223 134 04解:(1 2x) C41 (2x)C41 (2x) C41 (2x)C41

16、(2x)C41 (2x)2341 8x 24 x 32x16x思考1.第三項(xiàng)的系數(shù)是多少?思考2.第三項(xiàng)的二項(xiàng)式系數(shù)是多少?你能得到什么結(jié)論?板書:.二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)是兩個(gè)不同概念.思考3.若本例只求第三項(xiàng)的二項(xiàng)式系數(shù),你還可以怎么處理?哪種方法更好? 四、歸納小結(jié)1 .學(xué)生的學(xué)習(xí)體會(huì)與感悟;2 .教師強(qiáng)調(diào):(1)主要探究方法:從特殊到一般再回到特殊的思想方法(2)從特殊情況入手,“觀察一一歸納一一猜想一一證明”的思維方法,是人們發(fā)現(xiàn)事 物規(guī)律的重要方法之一,要養(yǎng)成“大膽猜想,嚴(yán)謹(jǐn)論證”的良好習(xí)慣.(3)二項(xiàng)式定理每一項(xiàng)中字母 a, b的指數(shù)和為n , a的指數(shù)從n遞減至0同時(shí)b的 指數(shù)由

17、0遞增至n,體現(xiàn)數(shù)學(xué)的對(duì)稱美、 和諧美.二項(xiàng)式系數(shù)還有哪些規(guī)律呢?希望同學(xué)們 在課下繼續(xù)研究、能夠有新的發(fā)現(xiàn).五、作業(yè) P121習(xí)題10.4 2, 4, 5【自評(píng)反饋與反思】1 .探究與合作是本節(jié)課的亮點(diǎn)本節(jié)課采用探究式教學(xué)方式, 注重學(xué)生的學(xué)習(xí)狀態(tài)和情感體驗(yàn),注重教學(xué)過(guò)程中學(xué)生主體地位的體現(xiàn)和主體作用的發(fā)揮,尊重學(xué)生人格和個(gè)性,鼓勵(lì)發(fā)現(xiàn)、探究與質(zhì)疑,符合“以 學(xué)生的發(fā)展為本”新課程理念.本課采用小組合作、探究的方式,學(xué)生從特殊情況入手,探究 n=1, 2, 3, 4,時(shí)二 項(xiàng)展開式的規(guī)律,觀察發(fā)現(xiàn)二項(xiàng)式定理的基本內(nèi)容,再推廣到一般.(強(qiáng)調(diào)證明,但不要求證明)這樣,本課做到了以學(xué)生為主體,學(xué)生

18、通過(guò)自主與合作的探究學(xué)習(xí),經(jīng)歷從特殊到一般的學(xué)習(xí)過(guò)程.在接受、掌握知識(shí)的同時(shí),學(xué)生的學(xué)習(xí)能力與思維方法得到發(fā)展,科學(xué)思維修 養(yǎng)獲得了提高,合作的意識(shí)得到加強(qiáng).凡事豫(預(yù))則立,不豫(預(yù))則廢2 .德育滲透恰當(dāng),適時(shí)適度通過(guò)對(duì)二項(xiàng)式定理內(nèi)容的研究,學(xué)生體驗(yàn)了從特殊到一般發(fā)現(xiàn)規(guī)律,從一般到特殊的指導(dǎo)實(shí)踐的認(rèn)識(shí)事物過(guò)程. 通過(guò)對(duì)二項(xiàng)展開式結(jié)構(gòu)特點(diǎn)的觀察,學(xué)生體驗(yàn)到數(shù)學(xué)公式的對(duì)稱美、和諧美.本課有意識(shí)的培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí).新課程理念中強(qiáng)調(diào)“培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意 識(shí)”,本節(jié)課正是由實(shí)際問題的引入為開始,又以問題的最終解決為結(jié)局,數(shù)學(xué)的應(yīng)用貫穿 整個(gè)課堂,突出了 “應(yīng)用意識(shí)”的培養(yǎng),符合新課程理念.突出數(shù)學(xué)思維方法與學(xué)習(xí)方法的指導(dǎo).數(shù)學(xué)有兩類猜想,一是歸納(不完全歸納),-是類比.本節(jié)課充分體現(xiàn)數(shù)學(xué)的“觀察一一歸納一一猜想一一證明”的思維方法:首先由學(xué) 生探究n=1, 2, 3,時(shí)二項(xiàng)展開式

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論