更高更妙的物理:專(zhuān)題17靜電場(chǎng):原理與方法_第1頁(yè)
更高更妙的物理:專(zhuān)題17靜電場(chǎng):原理與方法_第2頁(yè)
更高更妙的物理:專(zhuān)題17靜電場(chǎng):原理與方法_第3頁(yè)
更高更妙的物理:專(zhuān)題17靜電場(chǎng):原理與方法_第4頁(yè)
更高更妙的物理:專(zhuān)題17靜電場(chǎng):原理與方法_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、專(zhuān)題17 靜電場(chǎng):原理與方法在這個(gè)專(zhuān)題里,我們探討有關(guān)靜電場(chǎng)的一些重要原理以及場(chǎng)強(qiáng)、電勢(shì)和電荷分布等問(wèn)題的處理方法。 相對(duì)于觀察者靜止的電荷所產(chǎn)生的電場(chǎng)被我們稱(chēng)為靜電場(chǎng),靜電場(chǎng)最重要的外觀表現(xiàn)一是對(duì)進(jìn)入電場(chǎng)的任何帶電體都產(chǎn)生力的作用;一是當(dāng)帶電體在電場(chǎng)中移動(dòng)時(shí),電場(chǎng)力做功,說(shuō)明靜電場(chǎng)具有能量。電荷守恒定律、庫(kù)侖定律、高斯定理、場(chǎng)疊加原理、唯一性原理都是反映靜電場(chǎng)這兩大表現(xiàn)所具性質(zhì)的基本規(guī)律。 在摩擦起電、接觸起電、感應(yīng)起電或其他方法使物體帶電的過(guò)程中,正、負(fù)電荷總是同時(shí)出現(xiàn)且量值一定相等,當(dāng)兩種等量異種電荷相遇發(fā)生中和時(shí),物體不再帶電,即一種電荷消失時(shí)必然有相等量值的異種電荷同時(shí)消失。實(shí)驗(yàn)證明

2、:對(duì)一個(gè)孤立系統(tǒng),電荷可在系統(tǒng)各部分之間遷移,但其總量保持不變?cè)瓉?lái)為零的始終為零,原來(lái)為某一量的,則始終為,此即電荷守恒定律,是物理學(xué)中的基本定律之一。在靜電場(chǎng)中,它與電場(chǎng)具有能量并遵從能量守恒是相承相容的。許多靜力學(xué)問(wèn)題都須依據(jù)這一原理來(lái)解決?!纠?】一個(gè)金屬球借助導(dǎo)電薄板從起電機(jī)上獲得電荷,板在每次與球接觸后又從起電機(jī)上帶電至電量為。如果球在第一次與板接觸后帶電量為,求球可獲得的最大電量?!痉治雠c解】球在第一次與板接觸后獲得的電量為,說(shuō)明有量值為的正電荷從板上轉(zhuǎn)移到球上,由電荷守恒可知,此時(shí)板上電量為,即球與板這一系統(tǒng)中的總電量是按的比例分配到球上與板上的。那么,當(dāng)多次操作直至最終板上電量

3、又一次為但不能向與之接觸的球遷移時(shí)(此時(shí)兩者等電勢(shì)),球上的電量達(dá)到最大,若設(shè)為,則應(yīng)有,故可求得球可獲得的最大電量。 點(diǎn)電荷間的庫(kù)侖定律,是靜電學(xué)的基本定律,庫(kù)侖定律給出點(diǎn)電荷間相互作用力與距離平方成反比,它的內(nèi)涵是很豐富的,它導(dǎo)致靜電場(chǎng)是“有源場(chǎng)”即我們熟悉的電場(chǎng)線(xiàn)總是從正電荷(源頭)出發(fā)、到負(fù)電荷(尾間)終止的結(jié)果;它導(dǎo)致靜電平衡的導(dǎo)體電荷分布在外表面而內(nèi)部場(chǎng)強(qiáng)為零;它可以導(dǎo)出下面將做介紹的揭示靜電場(chǎng)場(chǎng)強(qiáng)分布規(guī)律的高斯定理。 庫(kù)侖力與萬(wàn)有引力均為平方反比力,點(diǎn)電荷電場(chǎng)與質(zhì)點(diǎn)引力場(chǎng)的許多性質(zhì),具有可類(lèi)比性。在專(zhuān)題中我們整理過(guò)的關(guān)于引力場(chǎng)的各種結(jié)論,往往通過(guò)平移對(duì)稱(chēng)操作,對(duì)電場(chǎng)同樣適用,常用

4、模型與方法也往往是相通的。如引力場(chǎng)中曾被牛頓證明過(guò)的一個(gè)均勻球殼,對(duì)球殼內(nèi)物質(zhì)的萬(wàn)有引力為零,即球殼內(nèi)引力場(chǎng)處處為零。這個(gè)結(jié)論平移到一個(gè)均勻帶電球殼,則球殼內(nèi)電場(chǎng)強(qiáng)度處處為零;又如,對(duì)于一個(gè)質(zhì)量均勻半徑為的實(shí)心球,在距球心()處質(zhì)點(diǎn)只受到半徑為的球內(nèi)質(zhì)量的萬(wàn)有引力,“引力場(chǎng)強(qiáng)”,而以外的球殼(即為外徑為內(nèi)徑的球殼)則對(duì)質(zhì)點(diǎn)無(wú)引力的作用。這個(gè)結(jié)論平移到一個(gè)均勻帶電、半徑為的實(shí)心球,在距球心()處的場(chǎng)強(qiáng)只由半徑為的球內(nèi)電荷貢獻(xiàn):,而與以外的球殼所帶電荷無(wú)關(guān),等等?!纠?】把兩個(gè)相同的電量為的點(diǎn)電荷固定在相距為的地方,在二者中間放上第三個(gè)質(zhì)量為電量亦為的點(diǎn)電荷,現(xiàn)沿電荷連線(xiàn)方向給第三個(gè)點(diǎn)電荷一小擾動(dòng)

5、,證明隨之發(fā)生的小幅振動(dòng)為簡(jiǎn)諧運(yùn)動(dòng)并求其周期?!痉治雠c解】如圖所示,為等量同種正電荷連線(xiàn)的中點(diǎn),該點(diǎn)場(chǎng)強(qiáng)為零,則第三個(gè)電荷置于該點(diǎn)處于平衡,受擾動(dòng)后,設(shè)其有一位移,此時(shí)電荷受、兩處點(diǎn)電荷的庫(kù)侖力方向如圖示,以位移方向?yàn)檎狭?,注意到小幅振?dòng),是小量,則有,可見(jiàn)第三個(gè)點(diǎn)電荷所受合力為線(xiàn)性變化力且方向總與位移相反,故為簡(jiǎn)諧運(yùn)動(dòng),周期。 場(chǎng)強(qiáng)、電勢(shì)和電荷分布等問(wèn)題由于數(shù)學(xué)計(jì)算的困難,能夠用初等數(shù)學(xué)精確求解的只在一些具有很強(qiáng)對(duì)稱(chēng)性的情況下。例如點(diǎn)電荷及一對(duì)等量同種或異種點(diǎn)電荷形成的電場(chǎng)的場(chǎng)強(qiáng)與電勢(shì)分布;均勻帶電球體內(nèi)、外各點(diǎn)的場(chǎng)強(qiáng)與電勢(shì)分布;孤立帶電導(dǎo)體球的電荷分布,等等?!纠?】均勻帶電球殼半徑

6、為,帶正電,電量為,若在球面上劃出很小一塊,它所帶電量為()。試求球殼的其余部分對(duì)它的作用力?!痉治雠c解】這個(gè)問(wèn)題中,待求力是帶電球殼的內(nèi)力,且對(duì)稱(chēng)分布,宜用微元法求解。 如圖所示,是球面上劃出的很小一塊面積元,因帶電量,故可視作一點(diǎn)電荷,其在內(nèi)、外兩側(cè)引起的場(chǎng)強(qiáng)大小相等設(shè)為、方向相反。現(xiàn)設(shè)球殼其余部分在處的場(chǎng)強(qiáng)為,則內(nèi)側(cè)面作為球殼內(nèi)部,場(chǎng)強(qiáng)應(yīng)為零,故有。 而外側(cè),由均勻球殼場(chǎng)強(qiáng)公式,可得。 由以上兩式可得,則點(diǎn)電荷在處所受球殼其余部分對(duì)它的力為?!纠?】一個(gè)半徑為的孤立的帶電金屬絲環(huán),其中心電勢(shì)為。將此環(huán)靠近半徑為的接地的球,只有環(huán)中心位于球面上,如圖所示。試求球上感應(yīng)電荷的電量?!痉治雠c解

7、】將帶電金屬絲環(huán)分成許多相同的小面元,每個(gè)電荷元所帶電量為、,它們?cè)诃h(huán)中心處形成的電勢(shì)為,則金屬絲帶電量為。設(shè)接地的球上感應(yīng)電量為,由于接地,故整個(gè)球?yàn)橐浑妱?shì)為零的等勢(shì)體,那么環(huán)上電荷及球上感應(yīng)電荷在球心處產(chǎn)生的電勢(shì)之和應(yīng)為零,即,得。 現(xiàn)在,我們從庫(kù)侖定律與場(chǎng)的疊加原理導(dǎo)出靜電學(xué)的另一條基本規(guī)律高斯定理。 我們知道,用電場(chǎng)線(xiàn)描述電場(chǎng)時(shí),電場(chǎng)線(xiàn)的疏密表示電場(chǎng)的強(qiáng)弱,若場(chǎng)中某面元上有條電場(chǎng)線(xiàn)垂直穿過(guò),則,稱(chēng)為電通量,并以正、負(fù)表示電場(chǎng)線(xiàn)從該面穿出或穿入。先考察點(diǎn)電荷的電場(chǎng),如圖所示,為以點(diǎn)電荷為中心包圍點(diǎn)電荷的球面,為包圍點(diǎn)電荷的任意封閉曲面,若球面半徑為,則球面上各處的場(chǎng)強(qiáng)大小均為,式中,稱(chēng)為

8、真空中的介電常數(shù)。顯然,從該球面穿出的電通量。根據(jù)電場(chǎng)線(xiàn)的性質(zhì)在電場(chǎng)中沒(méi)有電荷處的電場(chǎng)線(xiàn)是連續(xù)的、不相交的,可以肯定包圍點(diǎn)電荷的任意封閉曲面上的電通量也是。若如圖所示,電荷在閉合曲面之外,由電場(chǎng)線(xiàn)性質(zhì)可知穿入曲面的電場(chǎng)線(xiàn)條數(shù)與穿出該曲面的電場(chǎng)線(xiàn)條數(shù)相等,那么整個(gè)封閉曲面的總電通量為零。根據(jù)電場(chǎng)疊加原理,將上述結(jié)果推廣到任意點(diǎn)電荷系構(gòu)成的靜電場(chǎng):若閉合曲面包圍的電荷的代數(shù)和為,則,在真空中的任何靜電場(chǎng)中,通過(guò)任一閉合曲面的電通量等于這閉合曲面所包圍的電荷的代數(shù)和的,這就是真空中靜電場(chǎng)的高斯定理。 當(dāng)電荷分布具有某些特殊對(duì)稱(chēng)性時(shí),往往可應(yīng)用高斯定理簡(jiǎn)便地計(jì)算場(chǎng)強(qiáng)?!纠?】半徑為的圓板,在與其中心距

9、離為處置一點(diǎn)電荷,試求板上的電通量?!痉治雠c解】如圖所示,以點(diǎn)電荷為球心,以為半徑作一球面,顯然,通過(guò)圓板的電通量與以圓板周界為周界的球冠面的電通量是相同的,球面上電通量,則球冠面上電通量,那么圓板上的電通量即為?!纠?】在相距的兩根平行細(xì)長(zhǎng)導(dǎo)線(xiàn)上均勻地分布有異種電荷,其線(xiàn)密度為及。求在對(duì)稱(chēng)平面上與導(dǎo)線(xiàn)所在平面相距為的一點(diǎn)的電場(chǎng)強(qiáng)度?!痉治雠c解】我們先利用高斯定理求出與細(xì)長(zhǎng)導(dǎo)線(xiàn)距離為處的電場(chǎng)強(qiáng)度。如圖所示,細(xì)長(zhǎng)導(dǎo)線(xiàn)均勻帶電,由對(duì)稱(chēng)性知各點(diǎn)場(chǎng)強(qiáng)方向均沿法向,電場(chǎng)線(xiàn)分布輻向均勻?,F(xiàn)取一以細(xì)導(dǎo)線(xiàn)為幾何軸、底面半徑為、高的圓柱面,由高斯定理得該面上的電通量,則距軸心的圓柱面上的電場(chǎng)強(qiáng)度。本題中,點(diǎn)場(chǎng)強(qiáng)

10、是兩線(xiàn)電荷在該點(diǎn)電場(chǎng)的疊加,如圖所示,兩線(xiàn)電荷在點(diǎn)引起的場(chǎng)強(qiáng)大小相同:,方向如圖所示;合場(chǎng)強(qiáng)。 我們面對(duì)的各種具體問(wèn)題,往往情況復(fù)雜、對(duì)稱(chēng)破缺。解決這類(lèi)復(fù)雜問(wèn)題的一條重要途徑,便是依據(jù)靜電場(chǎng)問(wèn)題的唯一性原:理進(jìn)行等效變換,設(shè)法將復(fù)雜問(wèn)題化解為符合對(duì)稱(chēng)性要求的基本問(wèn)題,以便利用已知規(guī)律最終得解。 等效處理的辦法大致可分為兩類(lèi): 、對(duì)不具有對(duì)稱(chēng)性的帶電體,用若干具有對(duì)稱(chēng)性的帶電體做等效替代;或是對(duì)具有弱對(duì)稱(chēng)性的帶電體,用具有更強(qiáng)對(duì)稱(chēng)性的帶電體進(jìn)行等效替代。這種方法我們稱(chēng)之為“等效對(duì)稱(chēng)替代法”。、對(duì)實(shí)際導(dǎo)體面或電介質(zhì)面上的不均勻分布的電荷,用虛設(shè)的點(diǎn)電荷或均勻帶電球進(jìn)行等效替代,從而將一給定的靜電場(chǎng)

11、變換成另一易于計(jì)算的等效靜電場(chǎng)。這種方法我們稱(chēng)之為“等效電像變換法”先示例“等效對(duì)稱(chēng)替代法”。【例7】如圖所示,將表面均勻帶正電的半球,沿線(xiàn)分成兩部分,然后將這兩部分移開(kāi)很遠(yuǎn)的距離,設(shè)分開(kāi)后的球表面仍均勻帶電,試比較點(diǎn)與點(diǎn)電場(chǎng)強(qiáng)度的大小?!痉治雠c解】球冠面上正電荷在點(diǎn)產(chǎn)生的電場(chǎng)以示,球?qū)用嫔险姾稍邳c(diǎn)產(chǎn)生的電場(chǎng)以示,由對(duì)稱(chēng)性容易確定方向向右,方向向左,如圖所示。乍一看,卻似乎無(wú)法比較兩部分不規(guī)則帶電體產(chǎn)生的電場(chǎng)強(qiáng)度的大小,須設(shè)法作等效替代,創(chuàng)造出可運(yùn)用已知規(guī)律的條件。 如圖所示,設(shè)想以另一表面均勻分布正電荷的完全相同的半球,附在球?qū)由蠘?gòu)成球缺,顯然,球缺在點(diǎn)產(chǎn)生的電場(chǎng)強(qiáng)度大于;球缺和球冠構(gòu)成一

12、完整球,由于均勻帶電球面內(nèi)電場(chǎng)強(qiáng)度處處為零,那么,與必然大小相等方向相反,于是,我們可確定球冠面電荷在點(diǎn)產(chǎn)生的電場(chǎng)強(qiáng)度大于球?qū)用骐姾稍邳c(diǎn)產(chǎn)生的電場(chǎng)強(qiáng)度?!纠?】如圖所示,正四面體各面為導(dǎo)體,但又彼此絕緣。已知帶電后四個(gè)面的靜電勢(shì)分別為、和,求四面體中心點(diǎn)的電勢(shì)。【分析與解】若正四面體的四個(gè)面電勢(shì)相同,四面體就是一個(gè)等勢(shì)體,其中心點(diǎn)電勢(shì)即可確定?,F(xiàn)正四面體各面靜電勢(shì)均不同,其中心點(diǎn)的電勢(shì)難以直接確定,我們來(lái)進(jìn)行等效替代:另有同樣的三個(gè)四個(gè)面的靜電勢(shì)分別為、和的正四面體,將它們適當(dāng)?shù)丿B在一起,使四個(gè)面的電勢(shì)均為,中心點(diǎn)共點(diǎn),這個(gè)疊加而成的四面體是等勢(shì)體,其中心點(diǎn)電勢(shì)為,于是求得和?!纠?】如圖所示

13、,在半徑為、體密度為的均勻帶電球體內(nèi)部挖去半徑為的一個(gè)小球,小球球心與大球球心相距為,試求點(diǎn)的場(chǎng)強(qiáng),并證明空腔內(nèi)電場(chǎng)均勻。【分析與解】挖去一個(gè)小球而帶有空腔的帶電體球?qū)ΨQ(chēng)性被破壞,故難以直接運(yùn)用庫(kù)侖定律求出處的電場(chǎng)強(qiáng)度,須通過(guò)等效變換,將該帶電體轉(zhuǎn)化為若干個(gè)具有球?qū)ΨQ(chēng)性的帶電體。 設(shè)想空腔部分的靜電場(chǎng)構(gòu)成是由體電荷密度為與的兩個(gè)小均勻帶電球復(fù)合而成,于是原帶電體便被體電荷密度為半徑為的均勻帶正電大球與位于空腔部分的、體密度為半徑為的均勻帶負(fù)電小球替代,即:將空腔中的電場(chǎng)視作上述兩個(gè)帶電球引起的電場(chǎng)的疊加。由于此兩球的電場(chǎng)均具有輻向?qū)ΨQ(chēng)性,故問(wèn)題可解。體電荷密度為的小球在其球心產(chǎn)生的場(chǎng)強(qiáng)為零;體

14、電荷密度為的大球在處產(chǎn)生的場(chǎng)強(qiáng)大小為,則點(diǎn)的電場(chǎng)強(qiáng)度,方向由點(diǎn)指向點(diǎn)。 為了證明空腔內(nèi)電場(chǎng)均勻,我們?nèi)稳】涨粌?nèi)一點(diǎn),點(diǎn)對(duì)的矢徑為,對(duì)的矢徑為,如圖所示,圖中是大球在點(diǎn)引起的場(chǎng)強(qiáng),是小球在點(diǎn)引起的場(chǎng)強(qiáng),則點(diǎn)場(chǎng)強(qiáng)為,可知空腔內(nèi)任一點(diǎn)的場(chǎng)強(qiáng)方向均沿矢徑,即從點(diǎn)指向點(diǎn),大小均為,可見(jiàn)為一勻強(qiáng)場(chǎng)?!纠?0】如圖所示,在半徑為的細(xì)圓環(huán)上分布有不能移動(dòng)的正電荷,總電量為,是它的一條直徑,如果要使上的場(chǎng)強(qiáng)處處為零,則圓環(huán)上的電荷應(yīng)該如何分布?【分析與解】由于要求直徑上的場(chǎng)強(qiáng)處處為零,而圓環(huán)只對(duì)圓心具有對(duì)稱(chēng)性,故可知欲滿(mǎn)足題設(shè)條件,圓環(huán)上的電荷分布是不均勻的。我們知道,均勻帶電球殼內(nèi)部的場(chǎng)強(qiáng)處處為零,那么其直徑

15、上各點(diǎn)的場(chǎng)強(qiáng)自然為零了,現(xiàn)要使帶電圓環(huán)在其直徑上各點(diǎn)場(chǎng)強(qiáng)具有同樣的效果,那么環(huán)上的電荷分布一定與均勻帶電球面的電荷分布有著某種等效關(guān)系。 我們對(duì)直徑上場(chǎng)強(qiáng)的構(gòu)成作一分析,如圖所示,在均勻帶電球面的直徑上任取一點(diǎn),若用與垂直的平面分割球面,可得一系列的圓環(huán)帶,根據(jù)對(duì)稱(chēng)性可知,每一均勻帶電小環(huán)在點(diǎn)產(chǎn)生的場(chǎng)強(qiáng)矢量必沿,而所有小環(huán)在點(diǎn)的合場(chǎng)強(qiáng)為零?,F(xiàn)設(shè)想把原均勻分布在每一小環(huán)帶上的電荷均對(duì)半“擼”到該小環(huán)帶上兩弧線(xiàn)元和上,整個(gè)電量對(duì)稱(chēng)地分布到直徑兩側(cè)的半圓環(huán)上,則點(diǎn)的場(chǎng)強(qiáng)不變,直徑上的電場(chǎng)強(qiáng)度仍處處為零,不過(guò)細(xì)圓環(huán)上電荷的分布顯然是不均勻的。如圖所示,任取圓環(huán)上一點(diǎn),與的夾角為。取處極小段弧長(zhǎng),其上分

16、布的電量對(duì)應(yīng)于半徑為、電量為的均勻帶電球面上用垂直于直徑的平面截出的寬、周長(zhǎng)的小環(huán)帶上所帶電量的一半,即, 那么,該元弧段上的電荷線(xiàn)密度為。這就是令半徑為的細(xì)圓環(huán)一直徑上場(chǎng)強(qiáng)處處為零,電量在環(huán)上分布應(yīng)遵從的規(guī)律。 下面展示“電像變換法”。 【例11】如圖所示,無(wú)限大的接地導(dǎo)體板,在距板處的點(diǎn)有一個(gè)電量為的正電荷,求板上的感應(yīng)電荷對(duì)點(diǎn)電荷的作用力。【分析與解】由于導(dǎo)體板接地,板上的電勢(shì)為零,在點(diǎn)電荷的作用下,板的右側(cè)出現(xiàn)感應(yīng)電荷,但其電量及分布未知,故無(wú)法直接求出它們對(duì)電荷的作用力。然而,由于導(dǎo)體為一等勢(shì)面,從點(diǎn)電荷出發(fā)的電場(chǎng)線(xiàn)應(yīng)處處與導(dǎo)體面正交而終止,因而導(dǎo)體板右側(cè)電場(chǎng)線(xiàn)分布大致如圖所示。這使

17、我們聯(lián)想到等量異種電荷的電場(chǎng):兩點(diǎn)電荷聯(lián)線(xiàn)的垂直平分面為一零電勢(shì)面,電場(chǎng)線(xiàn)還包括圖中用虛線(xiàn)畫(huà)出的另一半。因此,導(dǎo)體板上感應(yīng)電荷對(duì)板右側(cè)電場(chǎng)的影響,可用與點(diǎn)電荷關(guān)于導(dǎo)體面成鏡像對(duì)稱(chēng)的另一虛設(shè)點(diǎn)電荷替代,板上感應(yīng)電荷對(duì)的作用亦等效于像電荷對(duì)發(fā)生的作用,于是,由庫(kù)侖定律容易得到,板上感應(yīng)電荷對(duì)點(diǎn)電荷的作用力大小為。 這里求解所用的方法,多用于接地導(dǎo)體或保持電勢(shì)不變的導(dǎo)體外有一個(gè)或多個(gè)點(diǎn)電荷的情況。通常根據(jù)導(dǎo)體面及點(diǎn)電荷的幾何位置關(guān)系,推斷在所考察區(qū)域適當(dāng)放置一個(gè)或多個(gè)量值合適的電荷,使之能夠滿(mǎn)足導(dǎo)體面上給定的場(chǎng)強(qiáng)及電勢(shì)條件、模擬感應(yīng)電荷對(duì)空間電場(chǎng)的貢獻(xiàn)。這些虛擬的電荷稱(chēng)為像電荷,通過(guò)等效電像變換的方

18、法,使實(shí)際問(wèn)題易于解決,而其可靠性則源于靜電學(xué)的重要原理唯一性原理。【例12】如圖所示,設(shè)在一接地導(dǎo)體球的右側(cè)點(diǎn),有一點(diǎn)電荷,它與球心的距離為,球的半徑為,求導(dǎo)體球上的感應(yīng)電荷為多少?點(diǎn)電荷受到的電場(chǎng)力為多大?【分析與解】先來(lái)確定導(dǎo)體球上感應(yīng)電荷的像電荷電量及位置。如圖所示,感應(yīng)電荷在球上的分布不均勻,靠近點(diǎn)一側(cè)較密,關(guān)于對(duì)稱(chēng),故大致位置在連線(xiàn)上,距為的點(diǎn)。由于導(dǎo)體球接地,球心處的電勢(shì)為零,根據(jù)電勢(shì)疊加原理可知,導(dǎo)體表面感應(yīng)電荷總電量在點(diǎn)引起的電勢(shì)與點(diǎn)電荷在點(diǎn)引起的電勢(shì)之和為零,即有,根據(jù)唯一性原理可知,等效的像電荷電量即此。像電荷位置,令其在球面上任意點(diǎn)引起的電勢(shì)與在同一點(diǎn)的電勢(shì)疊加為零,即

19、滿(mǎn)足,將代入,兩邊平方后有,對(duì)于任意的角,等式均成立,則,這樣確定了像電荷的位置,于是可求出球表面感應(yīng)電荷對(duì)的作用力它等同于像電荷對(duì)的庫(kù)侖力,是引力。 電荷與電場(chǎng)的相互關(guān)系包括兩個(gè)方面:靜電荷產(chǎn)生靜電場(chǎng)及電荷在靜電場(chǎng)中受力。電荷在給定電場(chǎng)中受到力的作用將發(fā)生運(yùn)動(dòng),在經(jīng)典物理范疇內(nèi),帶電質(zhì)點(diǎn)的運(yùn)動(dòng)遵守牛頓運(yùn)動(dòng)定律。帶電粒子在靜電場(chǎng)中的運(yùn)動(dòng)有著廣泛的科技應(yīng)用背景,如利用電子槍或離子槍加速帶電粒子、示波器和電子顯微鏡中采用靜電場(chǎng)來(lái)聚焦粒子束、用電子束或離子束做技術(shù)加工、靜電除塵與靜電噴漆,等等。這里援引第屆的一道試題,介紹帶電粒子在靜電場(chǎng)中運(yùn)動(dòng)的一種實(shí)際應(yīng)用?!纠?3】如圖所示,速調(diào)管用于甚高頻信號(hào)

20、的放大。速調(diào)管主要由兩個(gè)相距為的腔組成,每個(gè)腔有一對(duì)平行板。初始速度為的一束電子通過(guò)板上的小孔橫穿整個(gè)系統(tǒng)。要放大的高頻信號(hào)以一定的相位差(一個(gè)周期對(duì)應(yīng)于相位)分別加在兩對(duì)電極板上,從而在每個(gè)腔中產(chǎn)生交變水平電場(chǎng)。當(dāng)輸入腔中的電場(chǎng)方向向右時(shí),進(jìn)入腔中的電子被減速;反之,電場(chǎng)方向向左時(shí),電子被加速,這樣,從輸入腔中射出的電子經(jīng)過(guò)一定的距離后將疊加成短電子束。如果輸出腔位于該短電子束形成處,那么,只要加于其上的電壓相位選擇恰當(dāng),輸出腔中的電場(chǎng)將從電子束中吸收能量。設(shè)電壓信號(hào)為周期、電壓的方波。電子束的初始速度,電子荷質(zhì)比。假定間距很小,電子渡越腔的時(shí)間可忽略不計(jì)。保留位有效數(shù)字,計(jì)算:使電子能疊加

21、成短電子束的距離;由相移器提供的所需的輸出腔與輸入腔之間的相位差?!痉治雠c解】通過(guò)輸入腔的電子在電場(chǎng)方向向左時(shí)被電場(chǎng)加速,在電場(chǎng)方向向右時(shí)被減速,由動(dòng)能定理得電子離開(kāi)輸入腔時(shí)速度;要形成短電子束,應(yīng)使后半周期通過(guò)輸入腔被加速的電子經(jīng)過(guò)一段距離在輸出腔“追”上前半周期通過(guò)輸入腔被減速的電子,從而疊加成短電子束,故此應(yīng)有。即 為使輸出腔中的電場(chǎng)從短電子束中吸收能量,應(yīng)使電場(chǎng)方向向右,電場(chǎng)力對(duì)電子束做負(fù)功。當(dāng)輸入腔電場(chǎng)方向向右時(shí)滿(mǎn)足,則,或。1、如圖所示,正點(diǎn)電荷和正點(diǎn)電荷分別放置在、兩點(diǎn),兩點(diǎn)間相距?,F(xiàn)以為直徑作一半圓,電荷在此半圓上有一電勢(shì)最小的位置,設(shè)與的夾角為,則_。(用三角函數(shù)表示)2、如

22、圖所示,有“無(wú)限長(zhǎng)”均勻帶電圓柱面,半徑為,電荷面密度為,試求其場(chǎng)強(qiáng),并作圖。3、在一厚度為的無(wú)窮大平板層內(nèi)均勻地分布有正電荷,其密度為,求在平板層內(nèi)及平板層外的電場(chǎng)強(qiáng)度,并作圖。4、一點(diǎn)電荷位于一立方體中心,立方體邊長(zhǎng)為,試問(wèn)通過(guò)立方體一面的電通量是多少?如果點(diǎn)電荷移至立方體的一個(gè)角上,這時(shí)通過(guò)立方體每個(gè)面的電通量各是多少?5、如圖所示,電場(chǎng)線(xiàn)從正點(diǎn)電荷出發(fā),與正點(diǎn)電荷及負(fù)點(diǎn)電荷的連線(xiàn)成角,則該電場(chǎng)線(xiàn)進(jìn)入負(fù)點(diǎn)電荷的角度是多大?6、準(zhǔn)確地畫(huà)出兩點(diǎn)電荷及的電場(chǎng)線(xiàn)分布示意圖。7、電荷均勻分布在半球面上,它在這半球的中心處的電場(chǎng)強(qiáng)度等于。兩個(gè)平面通過(guò)同一條直徑,夾角為,從半球中分出一部分球面,如圖所

23、示。試求所分出的這部分球面上(在“小瓣”上)的電荷在處的電場(chǎng)強(qiáng)度。8、半徑為的導(dǎo)電球殼包圍半徑為的金屬球,金屬球原來(lái)具有的電勢(shì)為,如果讓球殼接地,則金屬球的電勢(shì)變?yōu)槎嗌伲?、有兩個(gè)異種點(diǎn)電荷,其電量之比為,相互間距離為。試證明它們的電場(chǎng)中電勢(shì)為零的等勢(shì)面為一球面,并求此等勢(shì)面的半徑及其中心與電量較小電荷的距離。10、兩個(gè)電量為的正點(diǎn)電荷位于一無(wú)窮大導(dǎo)體平板的同一側(cè),且與板的距離均為,兩點(diǎn)電荷之間的距離為。求在兩點(diǎn)電荷聯(lián)線(xiàn)的中點(diǎn)處電場(chǎng)強(qiáng)度的大小與方向。11、半徑分別為和的兩個(gè)同心半球相對(duì)放置,如圖所示,兩個(gè)半球面均勻帶電,電荷密度分別為和,試求大的半球面所對(duì)應(yīng)底面圓直徑上電勢(shì)的分布。12、有一半徑為、帶電量為的均勻帶電球面,試求其上的表面張力系數(shù),定義為面上單位長(zhǎng)度線(xiàn)段兩側(cè)各向?qū)Ψ绞┘拥淖饔昧Α?3、兩個(gè)半球合在一起組成一個(gè)完整的金屬球,球的半徑為,如圖所示,求這兩個(gè)半球間斥力。14、如圖所示,在一開(kāi)口的原不帶電的導(dǎo)體球殼中心點(diǎn)有一點(diǎn)電荷。球殼內(nèi)、外表面的半徑分別為和。欲將電荷通過(guò)小孔緩慢地從移到無(wú)窮遠(yuǎn)處,應(yīng)做多少功?15、如圖所示,兩個(gè)以為球心的同心金屬球殼都接地,半徑分別是、。現(xiàn)在離為()的地方放一個(gè)點(diǎn)電荷。問(wèn)兩個(gè)球殼上的感應(yīng)電荷的電量各是多少?16、如圖所示,半徑相同的兩個(gè)金屬球、相距很遠(yuǎn),原來(lái)不帶電,球先與遠(yuǎn)處

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論