版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、定義定義 設(shè)函數(shù)設(shè)函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(00yx的某一鄰的某一鄰域內(nèi)有定義,當(dāng)域內(nèi)有定義,當(dāng)y固定在固定在0y而而x在在0 x處有增量處有增量x 時(shí),相應(yīng)地函數(shù)有增量時(shí),相應(yīng)地函數(shù)有增量 ),(),(0000yxfyxxf ,如果如果xyxfyxxfx ),(),(lim00000存在,則稱存在,則稱此極限為函數(shù)此極限為函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(00yx處對處對x的的偏導(dǎo)數(shù),記為偏導(dǎo)數(shù),記為一、偏導(dǎo)數(shù)的定義及其計(jì)算法一、偏導(dǎo)數(shù)的定義及其計(jì)算法第二節(jié)第二節(jié) 偏導(dǎo)數(shù)和全微分偏導(dǎo)數(shù)和全微分同理可定義同理可定義函數(shù)函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(00yx處對處對y的偏導(dǎo)數(shù),的偏導(dǎo)
2、數(shù), 為為yyxfyyxfy ),(),(lim00000 記為記為00yyxxyz ,00yyxxyf ,00yyxxyz 或或),(00yxfy. .00yyxxxz ,00yyxxxf ,00yyxxxz 或或),(00yxfx.如如果果函函數(shù)數(shù)),(yxfz 在在區(qū)區(qū)域域D內(nèi)內(nèi)任任一一點(diǎn)點(diǎn)),(yx處處對對x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù)都都存存在在,那那么么這這個個偏偏導(dǎo)導(dǎo)數(shù)數(shù)就就是是x、y的的函函數(shù)數(shù),它它就就稱稱為為函函數(shù)數(shù)),(yxfz 對對自自變變量量x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù), 記記作作xz ,xf ,xz或或),(yxfx.同理可以定義函數(shù)同理可以定義函數(shù)),(yxfz 對自變量對自變量y的偏
3、導(dǎo)的偏導(dǎo)數(shù),記作數(shù),記作yz ,yf ,yz或或),(yxfy.偏導(dǎo)數(shù)的概念可以推廣到二元以上函數(shù)偏導(dǎo)數(shù)的概念可以推廣到二元以上函數(shù)如如 在在 處處 ),(zyxfu ),(zyx,),(),(lim),(0 xzyxfzyxxfzyxfxx ,),(),(lim),(0yzyxfzyyxfzyxfyy .),(),(lim),(0zzyxfzzyxfzyxfzz 例例1 1 求求 223yxyxz 在在點(diǎn)點(diǎn))2 , 1 (處處的的偏偏導(dǎo)導(dǎo)數(shù)數(shù)解解例例 2 2 設(shè)設(shè)yxz )1, 0( xx, 求證求證 zyzxxzyx2ln1 .證證解解例例例例 4 4 已知理想氣體的狀態(tài)方程已知理想氣體的
4、狀態(tài)方程RTpV (R為常數(shù)) ,求證:為常數(shù)) ,求證:1 pTTVVp.證證 VRTp;2VRTVp pRTV;pRTV RpVT;RVpT pTTVVp2VRT pR RV . 1 pVRT 偏偏導(dǎo)導(dǎo)數(shù)數(shù)xu 是是一一個個整整體體記記號號,不不能能拆拆分分;).0, 0(),0, 0(,),(,yxffxyyxfz求求設(shè)設(shè)例例如如 有關(guān)偏導(dǎo)數(shù)的幾點(diǎn)說明:有關(guān)偏導(dǎo)數(shù)的幾點(diǎn)說明:、 求分界點(diǎn)、不連續(xù)點(diǎn)處的偏導(dǎo)數(shù)要用求分界點(diǎn)、不連續(xù)點(diǎn)處的偏導(dǎo)數(shù)要用定義求;定義求;解解xxfxx0|0|lim)0 , 0(0 0 ).0 , 0(yf 、偏導(dǎo)數(shù)存在與連續(xù)的關(guān)系、偏導(dǎo)數(shù)存在與連續(xù)的關(guān)系例例如如,函
5、函數(shù)數(shù) 0, 00,),(222222yxyxyxxyyxf,依依定定義義知知在在)0 , 0(處處,0)0 , 0()0 , 0( yxff.但函數(shù)在該點(diǎn)處并不連續(xù)但函數(shù)在該點(diǎn)處并不連續(xù). 偏導(dǎo)數(shù)存在偏導(dǎo)數(shù)存在 連續(xù)連續(xù).一元函數(shù)中在某點(diǎn)可導(dǎo)一元函數(shù)中在某點(diǎn)可導(dǎo) 連續(xù),連續(xù),多元函數(shù)中在某點(diǎn)偏導(dǎo)數(shù)存在多元函數(shù)中在某點(diǎn)偏導(dǎo)數(shù)存在 連續(xù),連續(xù),4、偏導(dǎo)數(shù)的幾何意義、偏導(dǎo)數(shù)的幾何意義,),(),(,(00000上上一一點(diǎn)點(diǎn)為為曲曲面面設(shè)設(shè)yxfzyxfyxM 如圖如圖 偏偏導(dǎo)導(dǎo)數(shù)數(shù)),(00yxfx就就是是曲曲面面被被平平面面0yy 所所截截得得的的曲曲線線在在點(diǎn)點(diǎn)0M處處的的切切線線xTM0對對
6、x軸軸的的斜斜率率. 偏偏導(dǎo)導(dǎo)數(shù)數(shù)),(00yxfy就就是是曲曲面面被被平平面面0 xx 所所截截得得的的曲曲線線在在點(diǎn)點(diǎn)0M處處的的切切線線yTM0對對y軸軸的的斜斜率率.幾何意義幾何意義: :),(22yxfxzxzxxx ),(22yxfyzyzyyy ),(2yxfyxzxzyxy ),(2yxfxyzyzxyx 函函數(shù)數(shù)),(yxfz 的的二二階階偏偏導(dǎo)導(dǎo)數(shù)數(shù)為為純偏導(dǎo)純偏導(dǎo)混合偏導(dǎo)混合偏導(dǎo)定義:二階及二階以上的偏導(dǎo)數(shù)統(tǒng)稱為高階定義:二階及二階以上的偏導(dǎo)數(shù)統(tǒng)稱為高階偏導(dǎo)數(shù)偏導(dǎo)數(shù).二、高階偏導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)例例 5設(shè)設(shè)13323 xyxyyxz,求求22xz 、xyz 2、yxz 2
7、、22yz 及33xz .解解例例6 6 設(shè)設(shè)byeuaxcos ,求求二二階階偏偏導(dǎo)導(dǎo)數(shù)數(shù).解解定定理理 如如果果函函數(shù)數(shù)),(yxfz 的的兩兩個個二二階階混混合合偏偏導(dǎo)導(dǎo)數(shù)數(shù)xyz 2及及yxz 2在在區(qū)區(qū)域域 D D 內(nèi)內(nèi)連連續(xù)續(xù),那那末末在在該該區(qū)區(qū)域域內(nèi)內(nèi)這這兩兩個個二二階階混混合合偏偏導(dǎo)導(dǎo)數(shù)數(shù)必必相相等等問題:問題:混合偏導(dǎo)數(shù)都相等嗎?具備怎樣的條件才混合偏導(dǎo)數(shù)都相等嗎?具備怎樣的條件才相等?相等?例例 7 7 驗(yàn)驗(yàn)證證函函數(shù)數(shù)22ln),(yxyxu 滿滿足足拉拉普普拉拉斯斯方方程程 . 02222 yuxu解解若函數(shù)若函數(shù)),(yxf在 點(diǎn)在 點(diǎn)),(000yxP連連續(xù),能否
8、斷定續(xù),能否斷定),(yxf在點(diǎn)在點(diǎn)),(000yxP的偏導(dǎo)數(shù)必定存在?的偏導(dǎo)數(shù)必定存在?課堂思考題課堂思考題思考題解答思考題解答不能不能.,),(22yxyxf 在在)0 , 0(處處連連續(xù)續(xù),但但 )0 , 0()0 , 0(yxff 不不存存在在.例如例如,解解 xz;32yx yz.23yx 21yxxz,82312 21yxyz.72213 證證 xz,1 yyx yz,ln xxyyzxxzyx ln1xxxyxyxyylnln11 yyxx .2z 原結(jié)論成立原結(jié)論成立解解 xz xyxxyxx2222211322222)(|yxyyyx .|22yxy |)|(2yy yz y
9、yxxyxx222221132222)()(|yxxyyyx yyxx1sgn22 )0( y00 yxyz不存在不存在解解),ln(21ln2222yxyx ,22yxxxu ,22yxyyu ,)()(2)(222222222222yxxyyxxxyxxu .)()(2)(222222222222yxyxyxyyyxyu 22222222222222)()(yxyxyxxyyuxu . 0 解解xz ,33322yyyx yz ;9223xxyyx 22xz ,62xy 22yz ;1823xyx 33xz ,62y xyz 2. 19622 yyxyxz 2, 19622 yyx解解,c
10、osbyaexuax ;sinbybeyuax ,cos222byeaxuax ,cos222byebyuax ,sin2byabeyxuax .sin2byabexyuax ),(),(yxfyxxf xyxfx ),(),(),(yxfyyxf yyxfy ),( 二二元元函函數(shù)數(shù)對對x和和對對y的的偏偏微微分分 二二元元函函數(shù)數(shù)對對x和和對對y的的偏偏增增量量由一元函數(shù)微分學(xué)中增量與微分的關(guān)系得由一元函數(shù)微分學(xué)中增量與微分的關(guān)系得三、全微分的定義三、全微分的定義 如如果果函函數(shù)數(shù)),(yxfz 在在點(diǎn)點(diǎn)),(yx的的某某鄰鄰域域內(nèi)內(nèi)有有定定義義,并并設(shè)設(shè)),(yyxxP 為為這這鄰鄰域域
11、內(nèi)內(nèi)的的任任意意一一點(diǎn)點(diǎn),則則稱稱這這兩兩點(diǎn)點(diǎn)的的函函數(shù)數(shù)值值之之差差 ),(),(yxfyyxxf 為為函函數(shù)數(shù)在在點(diǎn)點(diǎn) P對對應(yīng)應(yīng)于于自自變變量量增增量量yx ,的的全全增增量量,記記為為z , 即即 z =),(),(yxfyyxxf 全增量的概念全增量的概念 如果函數(shù)如果函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx的全增量的全增量),(),(yxfyyxxfz 可以表示為可以表示為)( oyBxAz ,其中,其中BA,不依賴于不依賴于yx ,而僅與而僅與yx,有關(guān),有關(guān),22)()(yx ,則稱函數(shù)則稱函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx可微分,可微分,yBxA 稱為函數(shù)稱為函數(shù)),(yx
12、fz 在點(diǎn)在點(diǎn)),(yx的的全微分全微分,記為,記為dz,即,即 dz= =yBxA . .全微分的定義全微分的定義 函函數(shù)數(shù)若若在在某某區(qū)區(qū)域域 D 內(nèi)內(nèi)各各點(diǎn)點(diǎn)處處處處可可微微分分,則則稱稱這這函函數(shù)數(shù)在在 D 內(nèi)內(nèi)可可微微分分. 如果函數(shù)如果函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx可微分可微分, 則則函數(shù)在該點(diǎn)連續(xù)函數(shù)在該點(diǎn)連續(xù).事實(shí)上事實(shí)上),( oyBxAz , 0lim0 z ),(lim00yyxxfyx ),(lim0zyxf ),(yxf 故故函函數(shù)數(shù)),(yxfz 在在點(diǎn)點(diǎn)),(yx處處連連續(xù)續(xù).四、可微的條件四、可微的條件 定理定理 1 1(必要條件必要條件) 如果函數(shù)如果
13、函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx可微分,則該函數(shù)在點(diǎn)可微分,則該函數(shù)在點(diǎn)),(yx的偏導(dǎo)數(shù)的偏導(dǎo)數(shù)xz 、yz 必存在,且函數(shù)必存在,且函數(shù)),(yxfz 在點(diǎn)在點(diǎn)),(yx的全微分的全微分為為 yyzxxzdz 證證如如果果函函數(shù)數(shù)),(yxfz 在在點(diǎn)點(diǎn)),(yxP可可微微分分, ),(yyxxPP的的某某個個鄰鄰域域)( oyBxAz 總成立總成立,當(dāng)當(dāng)0 y時(shí)時(shí),上上式式仍仍成成立立,此時(shí)此時(shí)|x ,),(),(yxfyxxf |),(|xoxA Axyxfyxxfx ),(),(lim0,xz 同理可得同理可得.yzB 一元函數(shù)在某點(diǎn)的導(dǎo)數(shù)存在一元函數(shù)在某點(diǎn)的導(dǎo)數(shù)存在 微分存在
14、微分存在多元函數(shù)的各偏導(dǎo)數(shù)存在多元函數(shù)的各偏導(dǎo)數(shù)存在 全微分存在全微分存在例如,例如,.000),(222222 yxyxyxxyyxf在點(diǎn)在點(diǎn))0 , 0(處有處有 (0,0)(0,0) 0 xyff )0 , 0()0 , 0(yfxfzyx ,)()(22yxyx 如如果果考考慮慮點(diǎn)點(diǎn)),(yxP 沿沿著著直直線線xy 趨趨近近于于)0 , 0(,則則 22)()(yxyx 22)()(xxxx ,21 說說明明它它不不能能隨隨著著0 而而趨趨于于 0,0 當(dāng)當(dāng) 時(shí),時(shí),),()0 , 0()0 , 0( oyfxfzyx 函函數(shù)數(shù)在在點(diǎn)點(diǎn))0 , 0(處處不不可可微微. 說明說明:多元
15、函數(shù)的各偏導(dǎo)數(shù)存在并不能保證全:多元函數(shù)的各偏導(dǎo)數(shù)存在并不能保證全 微分存在,微分存在,定理(定理(充分條件充分條件) 如果函數(shù)如果函數(shù)),(yxfz 的偏的偏導(dǎo)數(shù)導(dǎo)數(shù)xz 、yz 在點(diǎn)在點(diǎn)),(yx連續(xù),則該函數(shù)在點(diǎn)連續(xù),則該函數(shù)在點(diǎn)),(yx可微分可微分 證證),(),(yxfyyxxfz ),(),(yyxfyyxxf ),(),(yxfyyxf ),(),(yyxfyyxxf xyyxxfx ),(1 )10(1 在第一個方括號內(nèi),應(yīng)用拉格朗日中值定理在第一個方括號內(nèi),應(yīng)用拉格朗日中值定理xxyxfx 1),( (依偏導(dǎo)數(shù)的連續(xù)性)(依偏導(dǎo)數(shù)的連續(xù)性)且且當(dāng)當(dāng)0, 0 yx時(shí)時(shí),01
16、.其其中中1 為為yx ,的的函函數(shù)數(shù),xxyxfx 1),( yyyxfy 2),( z 2121 yx, 00 故故函函數(shù)數(shù)),(yxfz 在在點(diǎn)點(diǎn)),(yx處處可可微微.同理同理),(),(yxfyyxf ,),(2yyyxfy 當(dāng)當(dāng)0 y時(shí)時(shí),02 ,習(xí)慣上,記全微分為習(xí)慣上,記全微分為.dyyzdxxzdz 全微分的定義可推廣到三元及三元以上函數(shù)全微分的定義可推廣到三元及三元以上函數(shù).dzzudyyudxxudu 通常我們把二元函數(shù)的全微分等于它的兩個通常我們把二元函數(shù)的全微分等于它的兩個偏微分之和這件事稱為二元函數(shù)的微分符合偏微分之和這件事稱為二元函數(shù)的微分符合疊加疊加原理原理疊加
17、原理也適用于二元以上函數(shù)的情況疊加原理也適用于二元以上函數(shù)的情況解解,xyyexz ,xyxeyz ,2)1 ,2(exz ,22)1 ,2(eyz .222dyedxedz 所求全微分所求全微分解解),2sin(yxyxz ),2sin(2)2cos(yxyyxyz dyyzdxxzdz),4(),4(),4( ).74(82 解解, 1 xu,2cos21yzzeyyu ,yzyezu 所求全微分所求全微分.)2cos21(dzyedyzeydxduyzyz 思思路路:按按有有關(guān)關(guān)定定義義討討論論;對對于于偏偏導(dǎo)導(dǎo)數(shù)數(shù)需需分分 )0 , 0(),( yx,)0 , 0(),( yx討討論論
18、.證證多元函數(shù)連續(xù)、可導(dǎo)、可微的關(guān)系多元函數(shù)連續(xù)、可導(dǎo)、可微的關(guān)系函數(shù)可微函數(shù)可微函數(shù)連續(xù)函數(shù)連續(xù)偏導(dǎo)數(shù)連續(xù)偏導(dǎo)數(shù)連續(xù)函數(shù)可導(dǎo)函數(shù)可導(dǎo)證證令令,cos x,sin y則則22)0,0(),(1sinlimyxxyyx 1sincossinlim20 0 ),0 , 0(f 故故函函數(shù)數(shù)在在點(diǎn)點(diǎn))0 , 0(連連續(xù)續(xù), )0 , 0(xfxfxfx )0 , 0()0 ,(lim0, 000lim0 xx同理同理. 0)0 , 0( yf當(dāng)當(dāng))0 , 0(),( yx時(shí)時(shí), ),(yxfx,1cos)(1sin22322222yxyxyxyxy 當(dāng)當(dāng)點(diǎn)點(diǎn)),(yxP沿沿直直線線xy 趨趨于于)0
19、 , 0(時(shí)時(shí),),(lim)0,0(),(yxfxxx,|21cos|22|21sinlim330 xxxxxx不存在不存在.所所以以),(yxfx在在)0 , 0(不不連連續(xù)續(xù).同理可證同理可證),(yxfy在在)0 , 0(不連續(xù)不連續(xù).)0 , 0(),(fyxff 22)()(1sinyxyx )()(22yxo 故故),(yxf在點(diǎn)在點(diǎn))0 , 0(可微可微. 0)0,0( df證證),()(tttu 則則);()(tttv 五、復(fù)合函數(shù)的為分法:鏈?zhǔn)椒ㄎ?、?fù)合函數(shù)的為分法:鏈?zhǔn)椒▌t則定理定理 如果函數(shù)如果函數(shù))(tu 及及)(tv 都在點(diǎn)都在點(diǎn) t可導(dǎo),函數(shù)可導(dǎo),函數(shù)),(vuf
20、z 在對應(yīng)點(diǎn)在對應(yīng)點(diǎn)),(vu具有具有連續(xù)偏導(dǎo)數(shù), 則復(fù)合函數(shù)連續(xù)偏導(dǎo)數(shù), 則復(fù)合函數(shù))(),(ttfz 在在對應(yīng)點(diǎn)對應(yīng)點(diǎn)t可導(dǎo),且其導(dǎo)數(shù)可用下列公式計(jì)算:可導(dǎo),且其導(dǎo)數(shù)可用下列公式計(jì)算: dtdvvzdtduuzdtdz ,獲得增量獲得增量設(shè)設(shè)tt 由由于于函函數(shù)數(shù)),(vufz 在在點(diǎn)點(diǎn)),(vu有有連連續(xù)續(xù)偏偏導(dǎo)導(dǎo)數(shù)數(shù),21vuvvzuuzz 當(dāng)當(dāng)0 u,0 v時(shí)時(shí),01 ,02 tvtutvvztuuztz 21 當(dāng)當(dāng)0 t時(shí)時(shí), 0 u,0 v,dtdutu ,dtdvtv .lim0dtdvvzdtduuztzdtdzt 上定理的結(jié)論可推廣到中間變量多于兩個的情況上定理的結(jié)論可推廣
21、到中間變量多于兩個的情況.如如dtdwwzdtdvvzdtduuzdtdz uvwtz以上公式中的導(dǎo)數(shù)以上公式中的導(dǎo)數(shù) 稱為稱為dtdz解解tzdtdvvzdtduuzdtdz ttuvetcossin ttetettcossincos .cos)sin(costttet 上定理還可推廣到中間變量不是一元函數(shù)上定理還可推廣到中間變量不是一元函數(shù)而是多元函數(shù)的情況:而是多元函數(shù)的情況:).,(),(yxyxfz 如如果果),(yxu 及及),(yxv 都都在在點(diǎn)點(diǎn)),(yx具具有有對對x和和y的的偏偏導(dǎo)導(dǎo)數(shù)數(shù),且且函函數(shù)數(shù)),(vufz 在在對對應(yīng)應(yīng)點(diǎn)點(diǎn)),(vu具具有有連連續(xù)續(xù)偏偏導(dǎo)導(dǎo)數(shù)數(shù),則則復(fù)復(fù)合合函函數(shù)數(shù)),(),(yxyxfz 在在對對應(yīng)應(yīng)點(diǎn)點(diǎn)),(yx的的兩兩個個偏偏導(dǎo)導(dǎo)數(shù)數(shù)存存在在,且且可可用用下下列列公公式式計(jì)計(jì)算算 xvvzxuuzxz , yvvzyuuzyz .uvxzy鏈?zhǔn)椒▌t如圖示鏈?zhǔn)椒▌t如圖示 xz uzxu vz,xv yz uzyu vz.yv 類似地再推廣,設(shè)類似地再推廣,設(shè)),(yxu 、),(yxv 、)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高速公路合同制收費(fèi)員二零二五年度服務(wù)質(zhì)量監(jiān)督與反饋協(xié)議3篇
- 2025年度落水管安裝與水質(zhì)凈化服務(wù)合同4篇
- 二零二五年度木屋建造與木材加工工藝改進(jìn)合同4篇
- 2025版養(yǎng)老信托資金借款合同3篇
- 2025版電子商務(wù)合同爭議解決程序與法律適用合同4篇
- 二零二五年度軟件開發(fā)與經(jīng)銷合同2篇
- 2025版學(xué)校教師培訓(xùn)與發(fā)展聘用合同樣本3篇
- 2025年外匯交易居間服務(wù)合同
- 2025年季度活動的混合贈與協(xié)議
- 煙草專賣局專賣管理員崗位技能鑒定知識輔導(dǎo)課件:案件查辦
- GB/T 16895.3-2024低壓電氣裝置第5-54部分:電氣設(shè)備的選擇和安裝接地配置和保護(hù)導(dǎo)體
- GJB9001C質(zhì)量管理體系要求-培訓(xùn)專題培訓(xùn)課件
- 二手車車主寄售協(xié)議書范文范本
- 窗簾采購?fù)稑?biāo)方案(技術(shù)方案)
- 基于學(xué)習(xí)任務(wù)群的小學(xué)語文單元整體教學(xué)設(shè)計(jì)策略的探究
- 人教版高中物理必修一同步課時(shí)作業(yè)(全冊)
- 食堂油鍋起火演練方案及流程
- 《呼吸衰竭的治療》
- 2024年度醫(yī)患溝通課件
- 2024年中考政治總復(fù)習(xí)初中道德與法治知識點(diǎn)總結(jié)(重點(diǎn)標(biāo)記版)
- 2024年手術(shù)室的應(yīng)急預(yù)案
評論
0/150
提交評論