結(jié)力上總復(fù)習(xí)_第1頁
結(jié)力上總復(fù)習(xí)_第2頁
結(jié)力上總復(fù)習(xí)_第3頁
結(jié)力上總復(fù)習(xí)_第4頁
結(jié)力上總復(fù)習(xí)_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第一章第一章 緒論緒論另,另,組合結(jié)點組合結(jié)點鉸結(jié)點鉸結(jié)點剛結(jié)點剛結(jié)點結(jié)點結(jié)點 活動鉸支座的支反力活動鉸支座的支反力ava鉸支座的支反力鉸支座的支反力ahavaahava固定支座的支反力固定支座的支反力 ahavamama定向支座的支反力定向支座的支反力a va簡支梁簡支梁懸臂梁懸臂梁外伸梁外伸梁單跨梁單跨梁多跨梁多跨梁軸線常為直線、受彎構(gòu)件軸線常為直線、受彎構(gòu)件桿件結(jié)構(gòu)的分類桿件結(jié)構(gòu)的分類直桿組成、主要受彎曲變形、至少有一個剛結(jié)點直桿組成、主要受彎曲變形、至少有一個剛結(jié)點桿軸線為曲線、力學(xué)特點是在豎向荷載作用下產(chǎn)生水平推力桿軸線為曲線、力學(xué)特點是在豎向荷載作用下產(chǎn)生水平推力直桿組成、全部結(jié)點

2、均為理想的鉸結(jié)點、荷載作用于結(jié)點、直桿組成、全部結(jié)點均為理想的鉸結(jié)點、荷載作用于結(jié)點、各桿只產(chǎn)生軸力(各桿只產(chǎn)生軸力(二力桿二力桿)二力桿二力桿:只承受軸力:只承受軸力梁式桿梁式桿:受彎構(gòu)件:受彎構(gòu)件第二章第二章 平面桿件體系的幾何組成分析平面桿件體系的幾何組成分析 1.一根鏈桿一根鏈桿可以為體系減少一個自由度,可以為體系減少一個自由度,相當(dāng)于一個約束相當(dāng)于一個約束。2.2.一個單鉸一個單鉸可為體系減少兩個自由度,可為體系減少兩個自由度,相當(dāng)于兩個約束相當(dāng)于兩個約束。3.聯(lián)結(jié)聯(lián)結(jié)n個剛片的復(fù)鉸相當(dāng)于個剛片的復(fù)鉸相當(dāng)于(n 1)個單鉸,相當(dāng)于個單鉸,相當(dāng)于2(n 1)個約束。個約束。4.一個單剛

3、結(jié)相當(dāng)于一個單剛結(jié)相當(dāng)于3個約束。個約束。其中,其中,m桿件桿件(剛片剛片)數(shù);數(shù);g單剛結(jié)數(shù);單剛結(jié)數(shù);h單鉸數(shù);單鉸數(shù);b單鏈桿數(shù)單鏈桿數(shù)計算自由度計算自由度w的計算公式的計算公式其中,其中,j結(jié)點數(shù);結(jié)點數(shù);b單鏈桿數(shù)單鏈桿數(shù)3、剛接在一起的各剛片可以作為一個大剛片。、剛接在一起的各剛片可以作為一個大剛片。4、鉸支座、定向支座相當(dāng)于兩個鏈桿,、鉸支座、定向支座相當(dāng)于兩個鏈桿, 固定支座相當(dāng)于三個鏈桿計入固定支座相當(dāng)于三個鏈桿計入b中。中。5、如體系內(nèi)部有多余約束則必須計入約束中,、如體系內(nèi)部有多余約束則必須計入約束中, 比如比如1個無鉸封閉框內(nèi)部具有個無鉸封閉框內(nèi)部具有3個多余約束。個多

4、余約束。1、地基這個剛片不能計入、地基這個剛片不能計入m中。中。2、復(fù)連接要換算成單連接。、復(fù)連接要換算成單連接。注注意意注意:注意:一一、兩剛片規(guī)則、兩剛片規(guī)則兩剛片用不互相平行,也不相交于一點的兩剛片用不互相平行,也不相交于一點的三根鏈桿三根鏈桿相連;相連;或以或以一鉸一鉸及不通過該鉸的及不通過該鉸的一根鏈桿一根鏈桿相連,則組成無多余約束的幾相連,則組成無多余約束的幾何不變體系何不變體系 。c1123三剛片用不在一條直線上的三剛片用不在一條直線上的三鉸三鉸兩兩兩兩相連,則組成無多余約束的幾何不變相連,則組成無多余約束的幾何不變體系。體系。二二、三剛片規(guī)則、三剛片規(guī)則abc三三、二元體規(guī)則、

5、二元體規(guī)則在體系上依次增加(或減去)二元體不改變原體系的幾何組成特性。在體系上依次增加(或減去)二元體不改變原體系的幾何組成特性。二元體:二元體:兩根不共線的鏈桿連兩根不共線的鏈桿連 結(jié)成一新結(jié)點的裝置。結(jié)成一新結(jié)點的裝置。二元體二元體體系體系a12可以是不變可以是不變或可變體系或可變體系三三一點一體系一點一體系兩個兩個兩鏈桿不共線兩鏈桿不共線規(guī)則規(guī)則連接對象連接對象 必要約束數(shù)必要約束數(shù)對約束的布置要求對約束的布置要求 鏈桿不過鉸鏈桿不過鉸一一 兩剛片兩剛片三個三個三鏈桿不平行也不交于一點三鏈桿不平行也不交于一點三剛片三剛片六個六個三鉸不共線三鉸不共線二二體系體系第三章第三章 靜定結(jié)構(gòu)的內(nèi)力

6、計算靜定結(jié)構(gòu)的內(nèi)力計算截面法求內(nèi)力截面法求內(nèi)力“截截”:在欲求內(nèi)力的截面處,假想地將結(jié)構(gòu)一分為二。:在欲求內(nèi)力的截面處,假想地將結(jié)構(gòu)一分為二。“取取”:從一分為二的兩部分中任取一部分為隔離體,以內(nèi)力替:從一分為二的兩部分中任取一部分為隔離體,以內(nèi)力替 代棄去部分對隔離體的作用。代棄去部分對隔離體的作用。“平平”:對隔離體建立靜力平衡條件求內(nèi)力。:對隔離體建立靜力平衡條件求內(nèi)力?!敖亟亍?、 “取取”、“平平”取隔離體的注意事項:取隔離體的注意事項:i).斷開隔離體與其周圍的全部約束、代之以約束力;斷開隔離體與其周圍的全部約束、代之以約束力;ii).標(biāo)出全部的外力;標(biāo)出全部的外力;iii).將內(nèi)力

7、按正向規(guī)定標(biāo)出,若算得的結(jié)果為正,則說明實際將內(nèi)力按正向規(guī)定標(biāo)出,若算得的結(jié)果為正,則說明實際 內(nèi)力方向與假設(shè)的一致、反之則相反。內(nèi)力方向與假設(shè)的一致、反之則相反。分布荷載分布荷載q0,q=常數(shù),常數(shù),q圖為一條平行于桿軸的直線;圖為一條平行于桿軸的直線; m圖為一條斜直線。圖為一條斜直線。2. q常數(shù)常數(shù)0,q圖為一條斜直線;圖為一條斜直線;m圖為一條二次拋物線、且圖為一條二次拋物線、且 m 圖的凸起方向與分布荷載的方向相同。圖的凸起方向與分布荷載的方向相同。 3. 集中力集中力p 作用處,作用處,q 圖有突變,突變差值等于圖有突變,突變差值等于p,m圖有尖角。圖有尖角。5. 剪力剪力q=0

8、處,彎矩取極值。處,彎矩取極值。4. 集中力偶集中力偶m0作用處,作用處,q圖無變化;圖無變化; m 圖有突變,突變差值為圖有突變,突變差值為m、且在集中力偶且在集中力偶m0作用點兩側(cè)的切線應(yīng)平行。作用點兩側(cè)的切線應(yīng)平行。qdxmd 22qdxdq qdxdm作作q圖、圖、 m圖的小竅門圖的小竅門1. 從左往右作從左往右作q圖,當(dāng)遇到集中力時剪力發(fā)生突變,突變的差值圖,當(dāng)遇到集中力時剪力發(fā)生突變,突變的差值 等于集中力的大小,突變的方向與集中力的方向相同。等于集中力的大小,突變的方向與集中力的方向相同。彎矩圖在該點形成尖角;尖角的凸起方向與集中力的方向相同。彎矩圖在該點形成尖角;尖角的凸起方向

9、與集中力的方向相同。 bacpl/2l/2m 圖圖4/plq 圖圖2/p2/p2.從左往右作從左往右作m圖,當(dāng)遇到集中力偶時彎矩發(fā)生突變,突變的差圖,當(dāng)遇到集中力偶時彎矩發(fā)生突變,突變的差值等于集中力偶的大小。若集中力偶順時針則向下突變;若集中值等于集中力偶的大小。若集中力偶順時針則向下突變;若集中力偶逆時針則向上突變、剪力圖在該點沒有變化。力偶逆時針則向上突變、剪力圖在該點沒有變化。 mebacl/2l/2lme/+q 圖圖2emm 圖圖2em1.控制截面控制截面(如支座處、荷載作用點、(如支座處、荷載作用點、 分布荷載的起止點等),應(yīng)用截面法求出控制截面的彎矩。分布荷載的起止點等),應(yīng)用截

10、面法求出控制截面的彎矩。(2).當(dāng)當(dāng)兩相鄰控制截面之間有外荷載兩相鄰控制截面之間有外荷載,則先用虛線連接這兩個,則先用虛線連接這兩個 控制截面的彎矩值,再以此虛線為控制截面的彎矩值,再以此虛線為基線基線疊加疊加該段相應(yīng)的簡該段相應(yīng)的簡 支梁支梁在此外荷載作用下的彎矩圖即得這一段的最后彎矩圖。在此外荷載作用下的彎矩圖即得這一段的最后彎矩圖。2.分段繪制彎矩圖:分段繪制彎矩圖:(1).當(dāng)當(dāng)兩相鄰控制截面之間無外荷載兩相鄰控制截面之間無外荷載,則用直線連接這兩個,則用直線連接這兩個 控制截面的彎矩值,即得這一段的最后彎矩圖;控制截面的彎矩值,即得這一段的最后彎矩圖;分段疊加法作分段疊加法作m圖的步驟

11、:圖的步驟:剪力、軸力的另一種計算方法剪力、軸力的另一種計算方法1.首先首先采用分段疊加法作出采用分段疊加法作出m 圖圖;2.“截桿法截桿法”求剪力求剪力3.“結(jié)點法結(jié)點法”求軸力求軸力 取桿件為隔離體,建立力矩平衡方程,由桿端彎矩和桿件上取桿件為隔離體,建立力矩平衡方程,由桿端彎矩和桿件上的外荷載(若桿件上有外荷載作用)求桿端剪力;的外荷載(若桿件上有外荷載作用)求桿端剪力;取結(jié)點為隔離體,根據(jù)已求得的結(jié)點剪力利用投影平衡方程,取結(jié)點為隔離體,根據(jù)已求得的結(jié)點剪力利用投影平衡方程,由桿端剪力求桿端軸力。由桿端剪力求桿端軸力。 多跨靜定梁多跨靜定梁傳力層次圖傳力層次圖:將基本部分畫在下層、附屬

12、部分畫在上層,能夠:將基本部分畫在下層、附屬部分畫在上層,能夠 清楚地表明各部分支承關(guān)系的圖形。清楚地表明各部分支承關(guān)系的圖形。受力特點:受力特點: 力作用在基本部分時附屬部分不受力,力作用在基本部分時附屬部分不受力,力作用在附屬部分時附屬部分和基本部分都受力。力作用在附屬部分時附屬部分和基本部分都受力。計算步驟:計算步驟:先計算附屬部分,將附屬部分的反力反向施加于基先計算附屬部分,將附屬部分的反力反向施加于基 本部分再計算基本部分。本部分再計算基本部分。剛架剛架全部或部分剛結(jié)點,這些剛結(jié)點將梁柱聯(lián)成一整體,全部或部分剛結(jié)點,這些剛結(jié)點將梁柱聯(lián)成一整體, 增大了結(jié)構(gòu)的剛度,變形小。增大了結(jié)構(gòu)的

13、剛度,變形小。剛架的內(nèi)部空間大,便于使用。剛架的內(nèi)部空間大,便于使用。剛架中的彎矩分布較為均勻,節(jié)省材料。剛架中的彎矩分布較為均勻,節(jié)省材料。 特特點點 剛架的分類剛架的分類 簡支剛架簡支剛架懸臂剛架懸臂剛架三鉸剛架三鉸剛架組合剛架組合剛架 計算的一般步驟計算的一般步驟 求支座反力。求支座反力。求控制截面(結(jié)點也須作為控制截面)的內(nèi)力。求控制截面(結(jié)點也須作為控制截面)的內(nèi)力。分段疊加法作分段疊加法作m 圖;圖;q 圖、圖、n 圖可由控制截面圖可由控制截面 的內(nèi)力作出。的內(nèi)力作出。三鉸拱三鉸拱力學(xué)特點:在力學(xué)特點:在豎向荷載豎向荷載作用下拱結(jié)構(gòu)會產(chǎn)生作用下拱結(jié)構(gòu)會產(chǎn)生水平推力水平推力。公式公式

14、fmhc0 hymm 0 sincos 0hqq cossin 0hqn 1、該組公式僅用于兩拱腳處于同一水平線上(平拱)、且、該組公式僅用于兩拱腳處于同一水平線上(平拱)、且 承受豎向荷載的情形;承受豎向荷載的情形; 2、在拱的左半跨、在拱的左半跨取正、右半跨取正、右半跨取負(fù)。取負(fù)。注注意意水平推力與三鉸拱的拱軸曲線水平推力與三鉸拱的拱軸曲線形式無關(guān),當(dāng)外力與跨度不變形式無關(guān),當(dāng)外力與跨度不變時,只與拱高成反比。時,只與拱高成反比。三鉸拱的合理軸線:三鉸拱的合理軸線:在在固定荷載固定荷載作用下使拱處于無作用下使拱處于無彎矩狀態(tài)彎矩狀態(tài)的軸的軸 線稱為線稱為“合理拱軸線合理拱軸線”。桁架結(jié)構(gòu)桁

15、架結(jié)構(gòu)計算假定計算假定結(jié)點都是光滑的鉸結(jié)點;結(jié)點都是光滑的鉸結(jié)點; 各桿都是直桿且通過鉸的中心;各桿都是直桿且通過鉸的中心;荷載和支座反力都作用在結(jié)點。荷載和支座反力都作用在結(jié)點。 分類:分類:簡單桁架、聯(lián)合簡單桁架、聯(lián)合桁架、復(fù)雜桁架桁架、復(fù)雜桁架計算方法:結(jié)點法、截面法計算方法:結(jié)點法、截面法特殊結(jié)點的力學(xué)性質(zhì)(由結(jié)點的平衡條件得到):特殊結(jié)點的力學(xué)性質(zhì)(由結(jié)點的平衡條件得到):當(dāng)結(jié)構(gòu)對稱、荷當(dāng)結(jié)構(gòu)對稱、荷載對稱、載對稱、k型結(jié)點型結(jié)點處于對稱軸上且處于對稱軸上且無荷載作用時,無荷載作用時, n1 = = n2 =0 =0。x型結(jié)點型結(jié)點n1n2=n1n3n4 =n3i)所作截面截斷三根以

16、上的桿件,如除了一根桿件以外,其余各所作截面截斷三根以上的桿件,如除了一根桿件以外,其余各桿均交于一點桿均交于一點o,則對,則對o點列力矩平衡方程可求出該桿的軸力。點列力矩平衡方程可求出該桿的軸力。i i)所作截面截斷三根以上的桿件,如除了一根桿件以外,其余各所作截面截斷三根以上的桿件,如除了一根桿件以外,其余各桿均互相平行,則由投影方程可求出該桿的軸力。桿均互相平行,則由投影方程可求出該桿的軸力。截面法的兩種特殊情況:截面法的兩種特殊情況:截面單桿截面單桿若某截面所截的內(nèi)力為未知的各桿中,除一桿以外若某截面所截的內(nèi)力為未知的各桿中,除一桿以外其余各桿都交于一點(或彼此平行其余各桿都交于一點(

17、或彼此平行交點在無窮遠(yuǎn)處),則稱此交點在無窮遠(yuǎn)處),則稱此桿為該截面的單桿。桿為該截面的單桿。組合結(jié)構(gòu)組合結(jié)構(gòu)組成:梁式桿(彎矩、剪力、軸力)組成:梁式桿(彎矩、剪力、軸力) 二力桿(軸力)二力桿(軸力)一般計算步驟:一般計算步驟:(1)求支反力;)求支反力;(2)求)求二力桿的軸力;二力桿的軸力;(3)最后求梁式桿的內(nèi)力:彎矩、剪力、軸力并作內(nèi)力圖。)最后求梁式桿的內(nèi)力:彎矩、剪力、軸力并作內(nèi)力圖。靜定結(jié)構(gòu)的特性靜定結(jié)構(gòu)的特性一、一、基本特性基本特性: 滿足平衡條件的內(nèi)力解答是唯一的。滿足平衡條件的內(nèi)力解答是唯一的。二、一般特性二、一般特性 2)靜定結(jié)構(gòu)的)靜定結(jié)構(gòu)的局部平衡特性局部平衡特性

18、:在荷載作用下,如果靜定結(jié)構(gòu):在荷載作用下,如果靜定結(jié)構(gòu) 中的某一局部可以與荷載平衡,則其余部分的內(nèi)力必為零。中的某一局部可以與荷載平衡,則其余部分的內(nèi)力必為零。3)靜定結(jié)構(gòu)的)靜定結(jié)構(gòu)的荷載等效特性荷載等效特性:當(dāng)靜定結(jié)構(gòu)的一個幾何不變部:當(dāng)靜定結(jié)構(gòu)的一個幾何不變部 分上的荷載作等效變換時,其余部分的內(nèi)力不變。分上的荷載作等效變換時,其余部分的內(nèi)力不變。4)靜定結(jié)構(gòu)的)靜定結(jié)構(gòu)的構(gòu)造變換特性構(gòu)造變換特性:當(dāng)靜定結(jié)構(gòu)的一個內(nèi)部幾何不:當(dāng)靜定結(jié)構(gòu)的一個內(nèi)部幾何不 變部分作構(gòu)造變換時,其余部分的內(nèi)力不變。變部分作構(gòu)造變換時,其余部分的內(nèi)力不變。1)溫度改變、支座移動和制造誤差等)溫度改變、支座移動

19、和制造誤差等非荷載因素在靜定結(jié)構(gòu)非荷載因素在靜定結(jié)構(gòu) 中不引起內(nèi)力。中不引起內(nèi)力。第四章第四章 結(jié)構(gòu)的位移計算結(jié)構(gòu)的位移計算單位荷載法計算結(jié)構(gòu)位移的一般步驟:單位荷載法計算結(jié)構(gòu)位移的一般步驟:(1) 建立虛力狀態(tài):在待求位移方向上加虛設(shè)單位力;建立虛力狀態(tài):在待求位移方向上加虛設(shè)單位力;(2) 求虛設(shè)單位力狀態(tài)下的內(nèi)力及反力求虛設(shè)單位力狀態(tài)下的內(nèi)力及反力 的表達(dá)式;的表達(dá)式;krqnm , , ,(3) 用位移公式計算位移:用位移公式計算位移: kkcrdqdndm)( 荷載作用下的位移計算公式:荷載作用下的位移計算公式: dsgaqqkeanneimmppp)( (只適用于只適用于彈性材料彈

20、性材料和和荷載因素荷載因素) )桁架:桁架: leannp組合結(jié)構(gòu):組合結(jié)構(gòu): leanndseimmpp拱拱一般情況:一般情況: dseimmp扁平拱:扁平拱: dseanndseimmpp梁、剛架:梁、剛架: dseimmp等截面直桿等截面直桿(即(即ei=常數(shù)常數(shù))1、圖乘法的適用條件、圖乘法的適用條件圖、圖、mp 圖中圖中至少有一個是直線彎矩圖至少有一個是直線彎矩圖m 3、 、y若在桿件的同側(cè),則乘積若在桿件的同側(cè),則乘積 取正號;反之取負(fù)號。取正號;反之取負(fù)號。y 位移計算的圖乘公式:位移計算的圖乘公式: eiydseimmp 豎標(biāo)豎標(biāo)y 應(yīng)取自直線彎矩圖中應(yīng)取自直線彎矩圖中,而,而

21、取自另一個彎矩圖;取自另一個彎矩圖;2、y 所在的所在的截面位置截面位置是由是由所取自彎矩圖的形心位置所取自彎矩圖的形心位置確定的。確定的。注意事項:注意事項:4、分段圖乘的兩種情況:、分段圖乘的兩種情況:21*y1 y2ei1ei2ei1ei2*1y1y22eiei矩矩 形形lhlxc21三角形三角形lh21lxc31lh*lh*標(biāo)準(zhǔn)二次標(biāo)準(zhǔn)二次拋物線拋物線lh31lxc41lh32lxc83lh32lh*頂點頂點lh*頂點頂點lh*頂點頂點lxc21簡單圖形的面積、形心位置簡單圖形的面積、形心位置*21*y1y21、梯形、梯形bacd2、有正負(fù)部分的直線彎矩圖、有正負(fù)部分的直線彎矩圖bac

22、d21*y1y2復(fù)雜圖形的處理復(fù)雜圖形的處理3、均布荷載作用的非標(biāo)準(zhǔn)拋物線、均布荷載作用的非標(biāo)準(zhǔn)拋物線m2281qlm1m2+281qlm1溫度改變不使靜定結(jié)構(gòu)產(chǎn)生內(nèi)力,溫度改變不使靜定結(jié)構(gòu)產(chǎn)生內(nèi)力,位移和變形是材料自由脹縮的結(jié)果。位移和變形是材料自由脹縮的結(jié)果。靜定結(jié)構(gòu)靜定結(jié)構(gòu)由于由于溫度改變引起的位移計算溫度改變引起的位移計算: : nmtht 0支座移動不會使靜定結(jié)構(gòu)產(chǎn)生內(nèi)力和變形,支座移動不會使靜定結(jié)構(gòu)產(chǎn)生內(nèi)力和變形,此時結(jié)構(gòu)只會發(fā)生剛體位移、即結(jié)構(gòu)的整體移動和轉(zhuǎn)動。此時結(jié)構(gòu)只會發(fā)生剛體位移、即結(jié)構(gòu)的整體移動和轉(zhuǎn)動。靜定結(jié)構(gòu)靜定結(jié)構(gòu)由于由于支座移動引起的位移計算支座移動引起的位移計算:

23、 :cr適用條件:適用條件:材料滿足線彈性,小變形的假設(shè)材料滿足線彈性,小變形的假設(shè)互等定理互等定理第五章第五章 影響線影響線影響線影響線單位移動荷載作用下描述某物理量值單位移動荷載作用下描述某物理量值 隨荷載位置變化規(guī)律的圖形。隨荷載位置變化規(guī)律的圖形。正確的影響線正確的影響線正確的外形正確的外形必要的控制點縱坐標(biāo)值必要的控制點縱坐標(biāo)值正負(fù)號正負(fù)號影響線坐標(biāo)的意義影響線坐標(biāo)的意義橫坐標(biāo):單位荷載的位置橫坐標(biāo):單位荷載的位置縱坐標(biāo):單位荷載作用在本位置時某縱坐標(biāo):單位荷載作用在本位置時某 量值的大小量值的大小影響線的影響線的繪制方法繪制方法 靜力法靜力法 機(jī)動法機(jī)動法p=1lxabcabi.l

24、.ra1 1 i.l.rbab/l i.l.mca/lb/l i.l.qc簡支梁的影響線簡支梁的影響線簡支梁彎矩影響線與彎矩圖的區(qū)別簡支梁彎矩影響線與彎矩圖的區(qū)別彎矩彎矩圖圖 力力長長 固定荷載作用下固定荷載作用下各截面的彎矩值各截面的彎矩值截面位置截面位置變變不變不變 長長 荷載移動到此位荷載移動到此位置時置時mc 的大小的大小荷載位置荷載位置不變不變變變影響影響線線量綱量綱縱坐標(biāo)縱坐標(biāo)橫座標(biāo)橫座標(biāo)截面截面位置位置荷載荷載位置位置ab/l i.l.mcm圖圖plab機(jī)動法做靜定結(jié)構(gòu)反力或內(nèi)力影響線的步驟機(jī)動法做靜定結(jié)構(gòu)反力或內(nèi)力影響線的步驟:1.解除與所求量值對應(yīng)的約束,代之以約束力,使結(jié)構(gòu)

25、變解除與所求量值對應(yīng)的約束,代之以約束力,使結(jié)構(gòu)變 成可變體系;成可變體系;2.使體系沿約束力的正向發(fā)生單位虛位移,如此得到的位使體系沿約束力的正向發(fā)生單位虛位移,如此得到的位 移圖即為該量值的影響線;移圖即為該量值的影響線; 桿軸以上的圖形部分取正、反之取負(fù)。桿軸以上的圖形部分取正、反之取負(fù)。 故靜定結(jié)構(gòu)的反力和內(nèi)力影響線都是直線或折線圖形。故靜定結(jié)構(gòu)的反力和內(nèi)力影響線都是直線或折線圖形。 結(jié)點荷載作用下主梁影響線的結(jié)論:結(jié)點荷載作用下主梁影響線的結(jié)論:1.結(jié)點荷載作用下,結(jié)構(gòu)任何影響線在相鄰兩結(jié)點之間為一直線。結(jié)點荷載作用下,結(jié)構(gòu)任何影響線在相鄰兩結(jié)點之間為一直線。2.先作直接荷載作用下的

26、影響線,用直線連接兩相鄰結(jié)點的豎標(biāo),先作直接荷載作用下的影響線,用直線連接兩相鄰結(jié)點的豎標(biāo), 即得結(jié)點荷載作用下的影響線。即得結(jié)點荷載作用下的影響線。1. 利用影響線求固定荷載作用下某量值的大??;利用影響線求固定荷載作用下某量值的大?。?. 確定移動荷載的最不利位置。確定移動荷載的最不利位置。影響線的應(yīng)用:影響線的應(yīng)用:yi 和和 是代數(shù)量是代數(shù)量 qypzniii 1概念:若荷載移動到某位置使量值概念:若荷載移動到某位置使量值z 達(dá)到最大,達(dá)到最大, 則稱此荷載位置為則稱此荷載位置為z 的最不利位置。的最不利位置。確定的一般原則:將數(shù)值大、排列密的荷載放確定的一般原則:將數(shù)值大、排列密的荷載

27、放 在影響線豎距較大的部位。在影響線豎距較大的部位。kp 右右p左左 p habi.l.zbpappk 右右左左bppapk 右右左左1).由由“”變?yōu)樽優(yōu)椤啊保?).由由“”變?yōu)樽優(yōu)椤啊保?).由由“”變?yōu)樽優(yōu)椤啊?。判別式成立判別式成立的幾種情況的幾種情況 右右左左pp ,1、 分別指分別指在梁上的在梁上的pk左邊和右邊左邊和右邊所有荷載所有荷載的合力。的合力。注意:注意:2、該判別式只對三角形影響線適用(即有頂點);對有突變的圖、該判別式只對三角形影響線適用(即有頂點);對有突變的圖 形和直角三角形不適用。形和直角三角形不適用。最不利荷載的判定步驟:最不利荷載的判定步驟:1.由臨界荷載判別

28、式確定哪些荷載是臨界荷載;由臨界荷載判別式確定哪些荷載是臨界荷載;2.計算臨界荷載位置對應(yīng)的計算臨界荷載位置對應(yīng)的z 的極值;的極值;3.比較各比較各z 的極值,從中得到最大值;的極值,從中得到最大值;4.最大值發(fā)生時的臨界位置即是最大值發(fā)生時的臨界位置即是z 的最不利荷載位置。的最不利荷載位置。5-6 5-6 影響線的應(yīng)用影響線的應(yīng)用1. 令集中力令集中力pk 位于三角形影響線的頂點;位于三角形影響線的頂點;2.若若pk 為臨界荷載為臨界荷載pcr,則需滿足判別式:,則需滿足判別式:三角形影響線臨界荷載的判定三角形影響線臨界荷載的判定步驟:步驟:bpappk 右右左左bppapk 右右左左做

29、法:做法:將梁分成若干等份,求出各等分點的內(nèi)力最大值(將梁分成若干等份,求出各等分點的內(nèi)力最大值(最大最大正值正值)和最小值()和最小值(最大負(fù)值)最大負(fù)值);1. 用光滑曲線將最大值連成曲線,將最小值也連成曲線,用光滑曲線將最大值連成曲線,將最小值也連成曲線,由此得到的圖形即為內(nèi)力包絡(luò)圖。由此得到的圖形即為內(nèi)力包絡(luò)圖。彎矩包絡(luò)圖彎矩包絡(luò)圖剪力包絡(luò)圖剪力包絡(luò)圖內(nèi)力包絡(luò)圖:內(nèi)力包絡(luò)圖: 連接各截面內(nèi)力最大值的曲線稱為連接各截面內(nèi)力最大值的曲線稱為“內(nèi)力包絡(luò)圖內(nèi)力包絡(luò)圖”。簡支梁絕對最大彎矩簡支梁絕對最大彎矩的求解步驟的求解步驟:1. 求出使梁中點求出使梁中點產(chǎn)生最大彎矩的最不利荷載產(chǎn)生最大彎矩的最不利荷載pk ;arlabp1p2pipnpkxk22alx lkmallrm 2)22(max(1)(2)a為正,表明,表明r在在pk 的右邊;的右邊; a為負(fù),表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論