版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、?計算機科學導論?課件Unit 15Artificial Intelligence2345History of artificial intelligence6The field of artificial intelligencedeems the human cognition primitive is symbols, and cognitive processes are symbol operation. The core problems of artificial intelligence are knowledge representation, knowledge reaso
2、ning, and application of knowledge. The Symbolism always tries to use mathematical logic to create a unified theory of artificial intelligence system, but always encounters the difficulties that some knowledge cannot be resolved.7The field of artificial intelligence8The field of artificial intellige
3、nce9The field of artificial intelligence1011Semantic networks圖圖12Semantic networks13Rule-based systems14Other representations15Extracting knowledge16Extracting knowledge17Typical contribution of the school of Symbolism18Typical contribution of the school of Symbolism19Typical contribution of the sch
4、ool of Symbolism2021Image and sound processing22Image and sound processing23Image and sound processing24Image and sound processing25Image and sound processing26Image and sound processing27Image and sound processing28圖圖15.2 Googles self-driving carImage and sound processing29Image and sound processin
5、g30圖圖15.3 Googles self-driving carImage and sound processing31Image and sound processing32Image and sound processing33圖圖15.4 Tubenet Transit being developed in Beijing, ChinaImage and sound processing34Image and sound processing35圖圖15.5 CyCab a small autonomous carImage and sound processing36Image a
6、nd sound processing37Image and sound processing38Image and sound processing39Image and sound processing40Image and sound processingFigure 15.6 A quadrotor robot aircraft ()41Image and sound processing424344454647484950515253Intelligent robotFigure 15.7 A quadrotor robot aircraft(Courtesy of :/ ted )
7、5455565758Intelligent robotFigure 15.8 The BigDog robot(Courtesy of :/ ted )59606162636465666768697071ABA BA BA BA BAFFFFTTTFTFTTFTFFTFFFTTTTTT72ABA BA BA BA BAFFFFTTTFTFTTFTFFTFFFTTTTTT73ABA BA BA BA BAFFFFTTTFTFTTFTFFTFFFTTTTTT74ABA BA BA BA BAFFFFTTTFTFTTFTFFTFFFTTTTTT7576The weather is fine toda
8、yPremise 1Premise 2Therefore, well go to play football.7778798081All men are mortalsx man(x) mortal(x) Socrates is a manman(Socrates)Therefore, Socrates is mortal)()(xmortalxmanx8283848586Data mining and machine learning87Data mining and machine learning8815-5 Nature Inspired Computation89Introducti
9、on90Introduction91IntroductionInspired fromModels or AlgorithmsBrain information processingArtificial Neural NetworkFuzzy way of thinkingFuzzy SystemBiological immune mechanismArtificial ImmuneSystemBiological evolutionary processEvolutionary Computation (EC)Table15.2 Summary of some models or algor
10、ithms of Natural Computations92Artificial neural networks93Artificial neural networksFigure 15.9 The inputs and output of a perceptron94Artificial neural networks95Artificial neural networks96Artificial neural networksFigure 15.10 Schematic diagram of multi-layer neural network97Artificial neural ne
11、tworks98Artificial neural networksFigure 15.11 Schematic diagram of multi-layer neural network99Bionic intelligence100Bionic intelligence101Bionic intelligence102Bionic intelligence103Evolutionary computation104Evolutionary computation105Evolutionary computation106Evolutionary computation107Evolutio
12、nary computationAlgorithmMain Ideas or ObjectiveGenetic Algorithms (GA)Introduced byJohn Holland, in 1970sTo use three operators (selection, crossover, and mutation) to process some data structures which are used for simulating biological gene to get the result of the problem.The largest application
13、 of techniques is in the domain of optimization, which are the mainstream algorithms of EC.Evolution Strategies (ES)Introduced byI. Recenberg, H. P. Schwefel, in 1960sTo solve parameter optimization problems.Table15.3 Summary of some evolutionary computations108Evolutionary computationAlgorithmMain
14、Ideas or ObjectiveEvolutionary Programming (EP)Introduced byI. Recenberg, H. P. Schwefel, in 1960sTo evolve Finite State Machines (FSM) to predict events on the basis of former observations.Genetic Programming (GP)Introduced byCramer, in 1985.J, Koza made it more perfect, in 1992To evolve the program
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機械設(shè)計課程設(shè)計教案
- 李商隱嫦娥課程設(shè)計
- 哈工大電機課程設(shè)計
- 托育園教學收納課程設(shè)計
- 有關(guān)疫情課程設(shè)計
- 服裝銷售系統(tǒng)課程設(shè)計
- 小班動物世界課程設(shè)計
- 新田園課程設(shè)計原則
- 2024年知識產(chǎn)權(quán)許可合同:關(guān)于專利、商標等知識產(chǎn)權(quán)的授權(quán)協(xié)議
- 2024年電纜線批發(fā)協(xié)議標準文本版B版
- Camtasia_Studio使用教程
- 業(yè)務(wù)員手冊內(nèi)容
- 計劃分配率和實際分配率_CN
- 《紅燈停綠燈行》ppt課件
- 小學語文作文技巧六年級寫人文章寫作指導(課堂PPT)
- 《APQP培訓資料》
- PWM脈寬直流調(diào)速系統(tǒng)設(shè)計及 matlab仿真驗證
- 家具銷售合同,家居訂購訂貨協(xié)議A4標準版(精編版)
- 食品加工與保藏課件
- 有功、無功控制系統(tǒng)(AGCAVC)技術(shù)規(guī)范書
- 儲罐施工計劃
評論
0/150
提交評論