面向采礦和工程建筑領(lǐng)域的掘進(jìn)機(jī)性能優(yōu)化_第1頁
面向采礦和工程建筑領(lǐng)域的掘進(jìn)機(jī)性能優(yōu)化_第2頁
面向采礦和工程建筑領(lǐng)域的掘進(jìn)機(jī)性能優(yōu)化_第3頁
面向采礦和工程建筑領(lǐng)域的掘進(jìn)機(jī)性能優(yōu)化_第4頁
面向采礦和工程建筑領(lǐng)域的掘進(jìn)機(jī)性能優(yōu)化_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、附錄A面向采礦和工程建筑領(lǐng)域的掘進(jìn)機(jī)性能優(yōu)化1994年4月18日至21日在內(nèi)華達(dá)州拉斯維加斯舉行先進(jìn)鉆井技術(shù)研究所(ISDT)第13屆年度技術(shù)會議論文賈馬爾 羅斯塔米,地球力學(xué)研究所,科羅拉多礦業(yè)學(xué)院,科羅拉多州80401摘要本文將討論掘進(jìn)機(jī)的性能和相關(guān)參數(shù)及其對生產(chǎn)和生產(chǎn)率的影響。在這些影響掘進(jìn)機(jī)性能的參數(shù)中,最重要的是對截割頭設(shè)計參數(shù),它可以優(yōu)化到某一特定的要求狀態(tài)。在優(yōu)化設(shè)計中,程序和所采用的方法是重復(fù)試驗(yàn)。本文也介紹了一種這類的已經(jīng)開發(fā)并實(shí)現(xiàn)的計算機(jī)程序。導(dǎo)言掘進(jìn)機(jī)是最靈活的,因此,作為最常見的機(jī)械化挖土機(jī),利用在建造隧道或開發(fā)和生產(chǎn)在地下礦井中。這些機(jī)器是非常靈活,而且可以挖掘的各種

2、大小,形狀和類型的開口。從安裝的觀點(diǎn)上看,即時存取的支撐面就能對他們有非常有利的支持。此外,他們較少資本密集,比其他大多數(shù)機(jī)械化設(shè)備,掘進(jìn)機(jī)由此可以具有了有利的經(jīng)濟(jì)性好的優(yōu)勢。不過,運(yùn)營商也察覺到,掘進(jìn)機(jī)在切削阻力和磨料的巖層的局限性,限制了這些機(jī)器在采礦和民間地下施工的廣泛應(yīng)用。一般來說,巖石的形成與一無側(cè)限抗壓強(qiáng)度在超過100兆帕斯卡(15000 PSI)的是被視為不適合開挖掘進(jìn)機(jī) ,除非它是高度節(jié)或裂縫。這個限額,反映了在對部分機(jī)刀具在挖掘時遇到的阻力和磨料巖層接觸的巖石,缺乏剛度,以及作為過分較高的點(diǎn)成本和低產(chǎn)量的利率。不過掘進(jìn)機(jī),以溫和的阻力力和非適度軟磨料巖中普遍使用。他們所面對的

3、問題,就是要克服的巖石強(qiáng)度和耐磨性,他們可以削減。在為了改善掘進(jìn)機(jī)的切削能力,過去超過20年對鉆頭和截割頭設(shè)計已進(jìn)行了廣泛的研究。這些研究結(jié)果表明,鉆頭必須實(shí)現(xiàn)深穿透,讓有效率的切割,高生產(chǎn),避免過度有點(diǎn)磨損。但是,更深的截割,需要在截割頭部增大強(qiáng)度,這就需要高截割電機(jī)功率和高的抗變形能力。因此,在最近幾年,具有較高的切割功率和剛度的重型硬巖機(jī)器由制造商開發(fā)并引入市場。表現(xiàn)一臺機(jī)器與某一特定重量和安裝截割頭的功率匹配的參數(shù)是 高度依賴于截割頭的設(shè)計和鉆頭的安裝分配。改進(jìn)牙輪鉆頭保證良好的截割頭力平衡可以產(chǎn)生高得多的生產(chǎn)利率,減小由于截割頭的振動引起的生產(chǎn)率的下降。本文介紹了地球力學(xué)研究所電磁干

4、擾(EMI)的科羅拉多礦業(yè)學(xué)院(CSM)一項研究的結(jié)果表現(xiàn)在的對截割頭設(shè)計參數(shù)和使用的方法來優(yōu)化頭設(shè)計,以盡量減少頭部震動,并獲得最大限度地生產(chǎn)率。背景影響掘進(jìn)機(jī)的生產(chǎn)率和截割成本的幾個參數(shù),包括:巖石參數(shù),如巖石的壓縮和拉伸強(qiáng)度,磨蝕礦物含量(即石英)的抗拉強(qiáng)度、百分比,巖石結(jié)構(gòu)整體巖體分類和支持的要求。和矩陣式和硬度,存在面向力學(xué)性能的礦物復(fù)合材料,和彈性的行為巖石材料。地面條件,例如程度聯(lián)接(RQD),綜合狀況、地下水、斷層帶、混雜的面孔情況和整體巖石大量分類和支持需要。機(jī)器規(guī)格,包括機(jī)器重量, 截割力, 切截速度,擺動速度,最大的可掘高度、截割頭類型(軸向或橫向),鉆頭的類型、大小和其

5、他特征、鉆頭的在截割頭上的 數(shù)量和安裝方式位置。操作參數(shù),如形狀,大小,長度和開放,傾斜度,輪流或交叉削減,連續(xù)的切割和擴(kuò)大行動中,有多少巖層在隧道的道路,地面支持的方法,和工作時間表的意義人數(shù)輪班每天天內(nèi),每星期的百分比等。綜合這些參數(shù)確定了某一特定機(jī)在某一個巖石參數(shù)和地面條件下的生產(chǎn)能力。在1994年尼爾的會議上,已經(jīng)給出了大量的充分考慮影響掘進(jìn)機(jī)的性能和生產(chǎn)率的參數(shù)估計方法。在這些參數(shù),也有一些無法控制。它們包括巖石和地面條件,以及一些運(yùn)行參數(shù)。因此,當(dāng)一條隧道或巷道確定的條件下,具體到某一項目,唯一的可控參數(shù)就是掘進(jìn)機(jī)參數(shù)。一般情況下,第一步是要確定是否掘進(jìn)機(jī)是可行的和可以工作一個合理

6、的生產(chǎn)速度下的特定情況。第二步是選擇工人階級和一般規(guī)格的機(jī)器加以考慮為就業(yè)之間的機(jī)器可以在市場上。第三步是符合目前各種特色的巖石和地面的條件,另一方面,以盡量提高其產(chǎn)出率。這可以通過深入研究,設(shè)計參數(shù)和優(yōu)化設(shè)計的實(shí)踐來實(shí)現(xiàn)。另外,對于現(xiàn)有的機(jī)器已經(jīng)工作在各站上的,它始終是有利于進(jìn)行這種研究,以增加生產(chǎn)力并降低開挖成本。在掘進(jìn)機(jī)的運(yùn)用中,有許多研究致力于,可能的參數(shù)修改,實(shí)現(xiàn)更高的產(chǎn)出率。此外,掘進(jìn)機(jī)截割的巖石強(qiáng)度極限為在該行業(yè)里需要移動作業(yè)的硬巖掘進(jìn)機(jī)面臨的問題。以下是一些解決為提高截割頭的生產(chǎn)力和擴(kuò)大他們的經(jīng)濟(jì)適用于硬巖的辦法。當(dāng)運(yùn)用巷道掘進(jìn)機(jī)時,有關(guān)于達(dá)到更高的生產(chǎn)率的可能的修改做了許多研

7、究。 并且,巷道掘進(jìn)機(jī)的巖石力量極限經(jīng)常挑戰(zhàn)歸結(jié)于需要對于在產(chǎn)業(yè)的一種流動硬巖挖掘機(jī)。 下列是為增加巷道掘進(jìn)機(jī)生產(chǎn)力提議的有些解答并且擴(kuò)大他們對硬巖的經(jīng)濟(jì)適用性:-改變在材料和設(shè)計的鉆頭;-改善機(jī)械設(shè)計反應(yīng)整體截割頭截齒的力;-改善截割頭設(shè)計。鉆頭設(shè)計和材料首要的考慮,在鉆頭設(shè)計涉及到的限制是,在與巖石作用時,鉆頭的形狀和巖石力學(xué)性能影響著施加在巖石上的力量。顯然,為實(shí)現(xiàn)更深的截割,需要較高的切削力,可作用于對鉆頭的是有限制的最高力量。而在切割石英豐富的巖石類型中,截齒材料必須具有一定的耐磨和韌性,以承受沖擊載荷。使用碳化鎢與鈷合金,部分解決了這個問題和改進(jìn)截齒的壽命。此外,新的釬焊及表面處理

8、技術(shù),以改善耐磨性截齒??怂乖鰪?qiáng)截齒的耐磨性。在條款位形狀,指向攻擊(圓錐)截割頭,雖然他們是不是自封的激化,有時聲稱,增加了截齒的壽命和工作效率,由于他們的能力,保持一定的配置文件一個較長時期內(nèi)的時間。使用這些位幾乎已成為標(biāo)準(zhǔn)的重型掘進(jìn)機(jī)并改善他們的工作效率。應(yīng)用切割技術(shù)對掘進(jìn)機(jī)可以改善刀具的壽命,使這些機(jī)器攻擊更硬的巖石。 一微型切割機(jī)最近已在科羅拉多礦業(yè)學(xué)院研制成功。該截齒的平均直徑是12.5厘米(5英寸),安裝一個5厘米(2英寸)的懸臂式軸用滾針軸承。截割同樣的深度,微型截齒上的截割力要比常規(guī)的盤型刀盤上的截割力要小得多。微型截割頭是重量輕,遇到問題,能夠很容易處理和更換,而且鉆頭在掘

9、進(jìn)機(jī)截割頭上大約需要同一空間大小作為為標(biāo)準(zhǔn)。這些獨(dú)特的功能,采用微型截齒是一個非常有前途的解決適用范圍擴(kuò)大至截割頭能開挖困難的巖層的方案。機(jī)械設(shè)計機(jī)械設(shè)計,主要是根據(jù)機(jī)械的性能和作用于截割頭上的截割力。機(jī)器的質(zhì)量和整體幾何尺寸決定可用于截割頭上力的大小和最大力的方向。在本質(zhì)上,該掘進(jìn)機(jī)的能力,性能參數(shù)(即掘進(jìn)機(jī)掘進(jìn)能力,截割電機(jī),升降能力,后支撐力)是取決于機(jī)器的質(zhì)量。較大的機(jī)器質(zhì)量是通常與較大的截割頭想匹配,以便為反應(yīng)掘進(jìn)需要實(shí)現(xiàn)的較高的生產(chǎn)率。其中的限制因素,傳統(tǒng)上一直是掘進(jìn)機(jī)掘進(jìn)軸向力或以截割力的大小來確定機(jī)型。這股力量通常是由牽引的努力抓取工具產(chǎn)生的,這是被普遍認(rèn)為缺乏效率的,尤其是運(yùn)

10、用在軟,濕的樓層。安裝伸縮臂對新一代的截割頭 ,在相當(dāng)大的程度上,緩解這個問題。伸縮臂提供推進(jìn)力,而機(jī)器仍然平穩(wěn)。這使得更好地利用機(jī)器的質(zhì)量和摩擦之間的履帶式和地面。安裝了一套插孔,以增加掘進(jìn)的能力和較高的安裝截割頭的功率,也有助于改善截割頭的切削能力 。偶爾,面積較大航道已被用來增加截割電機(jī)功率,并允許更好地利用機(jī)器大規(guī)模增加生產(chǎn)率,而在機(jī)械液壓系統(tǒng)不需要任何改變。截割頭設(shè)計兩種類型的掘進(jìn)機(jī),擷取(橫向)和銑削(在網(wǎng)上或軸流式)截割頭,擷取類型更適合于堅硬的巖石切割。這是由此產(chǎn)生的阻力是沿著煤層壁的方向,(而不是垂直),在掘進(jìn)過程更有效地削減阻力,更好地利用機(jī)器的質(zhì)量來產(chǎn)生更有效的摩擦力。對

11、兩種類型的截割頭型式,進(jìn)行優(yōu)化設(shè)計是必要的,以配合巖石切割的特點(diǎn)和最大限度地生產(chǎn)率。設(shè)計參數(shù)包括截齒間隔,截齒位置,其傾斜角度,斜的角度。間距之間的截線必須通過分析巖石破壞行為和預(yù)期的深度滲透來進(jìn)行優(yōu)化。此外,截割頭的布局必須平衡,通過控制刀具的位置,以創(chuàng)造一個更合適的(隊)的分布,以盡量減少震動。這個問題是至關(guān)重要的,因?yàn)樵黾拥拈g距程度不足會影響刀具數(shù)量和潛在的更高的震動。頭部振動可產(chǎn)生不利影響的生產(chǎn)速度,機(jī)器的壽命和維修。因此,通過優(yōu)化截割頭設(shè)計,取得了良好的平衡截齒的分布數(shù)據(jù)和減少振動,可以提高的表現(xiàn),給定機(jī)器和最主要的優(yōu)化目標(biāo),目前所討論的文件在以下各節(jié)。截割頭的平衡和振動該截割頭振動

12、是指以整體的力量變化對頭部造成的之間的互動,鉆頭和巖石。掘進(jìn)的變異是一個功能的雙邊投資協(xié)定的數(shù)量在接觸的巖石,空間位置位在三維空間中,和深度的滲透率為每截齒。結(jié)合這些參數(shù)確定的總的力量作用于截割頭在任何特定的時間點(diǎn)。很明顯,自截割頭是旋轉(zhuǎn),時間轉(zhuǎn)化為空間和轉(zhuǎn)動的立場。在其他換言之,由此產(chǎn)生的力量對截割頭依賴于數(shù)量和分布雙邊投資條約的任何角節(jié)的截割頭在計劃查看(見圖1)。同時,貫穿深度為每截齒取決于其地位與尊重,以切割面。這是,雙邊投資條約可能再減一紅新月會形成路徑在巖石或削減在不斷滲透,視乎有關(guān)的運(yùn)作模式和鉆頭位置(圖2 ) 。該掘進(jìn)的要求,切割在某一個深度與一個固定的間距不同的截齒滲透到橫向

13、的巖石。這種變化的結(jié)果,從壓力建立在位元提示和圖1。假定鑒于該截割頭位布局模式圖2 。形狀伐區(qū)的鉆頭在各( 115角間距)。切割模式(后?;穵W盧1991年)。隨后釋放壓力,因此,掘進(jìn)由于切屑形成。不過,估計平均切削力可發(fā)展為切削在某一個深度的滲透,如下:其中,為正常的截割力(磅)P值為滲透率(帕)a,b為系數(shù),從切削試驗(yàn)中獲得。這是在實(shí)驗(yàn)室規(guī)模下,充分切削條件下,推導(dǎo)出曲線擬合的力量獲得的數(shù)據(jù)線切割測試的表現(xiàn)出的截割力的估算公式(即圖3)。牽引力,可以從正常的阻力使用風(fēng)阻系數(shù),界定為引力以正常的力的比例中估計。這個系數(shù)通常是0.45至1.0之間不同數(shù),具體多少依賴于巖石類型和鉆頭的截深。通常

14、運(yùn)行直接測力試驗(yàn),風(fēng)阻系數(shù)是衡量隨著切削力。因此,掘進(jìn)的要求,切割在某一個深度的滲透率估計,并用于截割頭總截割力和功耗估計,以及平衡。對于給定機(jī),優(yōu)化設(shè)計一開始就選擇一個適當(dāng)?shù)奈婚g距,以最大限度地切削效率在一個特定的巖石類型。最有效的切割是當(dāng)具體的能源,界定為能源需要削減一單位體積的巖石,是減至最低。它已被證明是由廣泛的實(shí)驗(yàn)室和實(shí)地研究認(rèn)為,最低具體的能源發(fā)生在一系列的間距,以滲透率(/)之間的比例2-4點(diǎn)攻擊刀。另一種做法,這也被用來定義最優(yōu)間距是外逃的角度巖石。這種做法是廣泛使用的掘進(jìn)機(jī)制造商和在本質(zhì)上是另一種方式來決定最佳的S/P比值。在此方法中,行距之間的雙邊投資條約的決心,從理想的深

15、度滲透和突破的角度來看,這是之間的夾角火山口表面所造成的破碎和切屑形成下位。雙方最佳的S/P比值,或突破的角度所控制的脆性巖石和最準(zhǔn)確地確定實(shí)際的切削試驗(yàn)。使用鉆頭截線間隔和截割頭的鉆頭布局,在截面可以通過確定的地位和傾斜角度的雙邊投資條約。傾斜的角度,對每比特是選定等,這是垂直于切削表面(或減少) 。在這個階段,雙邊投資協(xié)定的數(shù)量需要在頭部,和一般尺寸的刀具頭(長度和直徑)所指明的。下一步是要確定角的定位比特,以實(shí)現(xiàn)最佳的位分布,并盡量減少頭部震動。由于復(fù)雜和繁瑣的運(yùn)作所涉及的這些計算,這是可以完成的最好的計算機(jī)模擬。圖3 。估計和衡量的正常截割力。計算機(jī)模擬優(yōu)化截割頭一個計算機(jī)程序研制的截

16、齒對截割頭 ,以及模擬切削加工過程的設(shè)計主管。這一程序的能力,以確定的立場,位在三維空間中考慮到巖石性質(zhì),截割頭幾何形狀和深度的分布場。該程序檢查牙輪鉆頭的相互作用,并確定了雙邊投資協(xié)定的數(shù)量在與巖石在任何特定的旋轉(zhuǎn)角度的頭部。實(shí)際的滲透每一個人的一點(diǎn)是在與巖石的計算方法和部隊的要求,對于給定深度的滲透率估計。估計勢力,然后投射到三個相互垂直的軸(直角坐標(biāo)系)成立于截割頭。預(yù)計勢力概括起來估計總力和力矩的要求,頭部在每個運(yùn)作模式,即掘進(jìn)和電弧(回轉(zhuǎn)或剪切)模式。計算切削參數(shù)(如掘進(jìn)尺度或牽引力,扭矩和功率) ,然后記錄每個位置的頭部,因?yàn)樗D(zhuǎn)360與理想的角增量。表1是一個例子,該程序的輸出

17、旋轉(zhuǎn)一定的桿頭設(shè)計, 360 ,在2增薪點(diǎn)。此外,一些統(tǒng)計數(shù)據(jù)操縱的數(shù)據(jù)是這樣做的概要框,以評估的平均,最高,最低及截力/功率的要求,以及在每個模式的切割的百分比的變化。該百分比的變異是指的比例標(biāo)準(zhǔn)偏差,以平均參數(shù)的值。結(jié)果切削過程仿真也可以策劃對旋轉(zhuǎn)角度和用于振動分析的頭部(圖4 ) 。表1 程序輸出為模擬截割頭輪流在2增量該掘進(jìn)的變化及相關(guān)的圖表可以用來作為對截割頭評估其規(guī)模和頻率的振動的一個指標(biāo)。這意味著,軸向力/力矩的要求,可以查明和鉆頭要消除這些峰值力,或至少嘗試,以減輕他們的大小,以一系列內(nèi)部幾個百分點(diǎn)的平均水平。此外,這些變化是評估,以改善截割頭的設(shè)計,使切削過程變得順暢與最低限

18、度的變化。為此,雙邊截齒線上截齒的數(shù)量在聯(lián)絡(luò)必須保持幾乎相同,作為截割頭旋轉(zhuǎn),這意味著整個該截割頭上改變角間距分配比特均勻的任何切割的一段。根據(jù)截齒線間截齒的距離相等,周圍或有角間距的概念的截齒分派的一種算法被用于達(dá)到截齒和截割力在截割頭上能夠均勻分布(Hekimoglu,1991)。 這種算法得出能夠確定截齒的角位在截割頭所有特定部分的上維護(hù)截齒的一個相對地恒定的常數(shù)。一旦截齒的數(shù)量從選擇的間距和開始的數(shù)量被計算有角安置位控制在截割頭的截齒線上。 圖5是位一雙重跟蹤的分派圖,四的例子頂頭的開始(圖1顯示同一個頭的平面圖)。 必須為雙重或三倍跟蹤修改分派算法,并且開始(2, 3, 4的數(shù)量。.

19、6等)。 實(shí)質(zhì)上,算法定義了一位位置角(在一套位, 2跟蹤的雙的和3跟蹤的三倍的等等)從在同樣的早先位開始。 與截割頭主視圖和側(cè)視圖一起的截齒分派圖如生產(chǎn)由根據(jù)一個實(shí)時依據(jù)的節(jié)目,當(dāng)有角間距價值被選擇時,為設(shè)計師提供優(yōu)秀直觀教具。這些圖畫的好處是某些在設(shè)計和位分派的問題可以立刻辯認(rèn)和做的適當(dāng)?shù)恼{(diào)整消滅他們。 這些問題例如是的位編組在線或太在制造的接近的導(dǎo)致的潛在的困難可以欣然辯認(rèn)和排除的被采取的有角間距。 一個好例子使用導(dǎo)致位再分組在線的有角間距15, 30或者45。 同樣,非常小間距(或價值近180在一個雙重跟蹤的樣式)可能導(dǎo)致在位塊之間的物理干涉。開始選擇幾個隨機(jī)的價值觀和看的模式,在分配

20、圖和在主視圖上看,通過程序,以找到最佳的角間距,截齒的分配。下一步是要使用的角度和運(yùn)行截割頭輪換程序,在一個理想的掘進(jìn)環(huán)境和穿透深度。結(jié)果這個程式可以用來驗(yàn)證的類型和嚴(yán)重程度的變化,設(shè)計截割頭的布局。一個角接近前值,然后選定和結(jié)果切削仿真相比,一是觀察是否改變,改善了振動特性的頭部。一個有系統(tǒng)使用的劫持分配程序與監(jiān)測節(jié)目指南,以確定最優(yōu)的角間距結(jié)果在最低百分比內(nèi)的變化。此外,振動圖(圖4)所產(chǎn)生的仿真程序可以觀察發(fā)現(xiàn)任何異常的高山頂?shù)牧α?。它必須圖5 。一個例子比特分配圖115一提的是,最小的變化,可能會出現(xiàn)多次在一個介乎0至180 ,在這種情況下的最低值的差異,可被視為整體優(yōu)化,由于鉆頭座干

21、擾或極端高山峰已經(jīng)消除。相結(jié)合的比特分配算法,振動仿真,性能監(jiān)測在一個程序中提供了一個最終的優(yōu)化工具,截割頭的設(shè)計部分,面對機(jī)器,尤其是截割頭的設(shè)計。結(jié)論結(jié)果,廣泛的實(shí)驗(yàn)室測試和計算機(jī)模擬表明,通過優(yōu)化截割頭的設(shè)計,可以知道截割頭可以大大改善,以達(dá)到更高的生產(chǎn)利率更低的比特成本。影響機(jī)器性能的各參數(shù)之中,截割頭的設(shè)計是最容易控制和優(yōu)化。這可以通過評價巖石切割的行為和相匹配的截割頭設(shè)計的巖石和地面條件。最佳截齒線間距為某一特定值,在一定的巖石類型才能確定準(zhǔn)確全面的實(shí)驗(yàn)室切削試驗(yàn)。截割頭布局具有最佳角間距,才能確定使用的截齒分配和切削仿真程序。應(yīng)用這些最佳值在截割頭的設(shè)計將可確保截割頭產(chǎn)出率的最大

22、化。參考文獻(xiàn)Hekimoglu O.Z, Fowell R.J, 1991, “Theoretical and Practical Aspects of Circumferential Pick Spacing on Boom Tunneling Machine Cutting Heads, Mining Sci. & Tech., Vol.13, pp. 257-270. Neil, D.M., Rostami, J., Ozdemir, L., Gertsch, R.E., 1994, Production Estimating Techniques for Underground Min

23、ing Using Roadheaders, Annual meeting of the Society of Mining Metallurgy, and Exploration Engineers, Albuquerque, NM, Feb. 27 1994. Rostami J, Ozdemir L, , 1993a Computer Modeling for Cutterhead Design and Layout of Mechanical Excavators, Proc. of Institute of Shaft Drilling Technology (ISDT) annua

24、l technical meeting, Las Vegas, Nevada, May 2-6. Rostami J., Neil D.M., Ozdemir L, 1993b Roadheader Application for the Yucca Mountain Experimental Test Facility, Report prepared for RSN contract # SC-YM-93-159, EMI, CSM.附錄BROADHEADERS PERFORMANCE OPTIMIZATION FOR MINING AND CIVIL CONSTRUCTIONProcee

25、dings of 13th Annual Technical Conference, Institute of Shaft Drilling Technology (ISDT). Las Vegas, Nevada, April 18-21, 1994. Jamal Rostami, Levent OzdemirEarth Mechanics Institute, Colorado School of Mines, Golden, Colorado 80401 David M. Neil D. Neil & Associates, 1010 10th st., Golden, Colorado

26、 80401ABSTRACTRoadheader performance and related parameters are reviewed and their effects on the production and advance rate are discussed. Among the parameters influencing the machine performance, the most important one is the cutterhead design which could be optimized for a specific application.

27、The procedures and the approach used in design optimization is reviewed. A computer program which has been developed for implementation of these procedures is also presented in this paper. INTRODUCTIONRoadheaders are the most flexible and thus the most common mechanized excavators utilized in the co

28、nstruction of tunnels or development and production in underground mines. These machines are very mobile and can excavate various size, shape and type of openings. They provide immediate access to the face which is very favorable from a support installation viewpoint. Also they are less capital inte

29、nsive than most other mechanized tunneling machines and therefore, can provide favorable economics. The limitation of roadheaders in cutting hard and abrasive rock formations, along with being operator sensitive, however, restricts the widespread application of these machines in mining and civil und

30、erground construction. Generally, a rock formation with an unconfined compressive strength in excess of 100 MPa (15,000 psi) is considered to be unsuitable for excavation by roadheaders unless it is highly jointed or fractured. This limit reflects the lack of stiffness on the part of machine to hold

31、 the cutters in contact with the rock, as well as the excessively higher bit costs and low production rates that are encountered in excavation of hard and/or abrasive rock formations. However, roadheaders are commonly used in soft to moderately hard and non to moderately abrasive rocks. The challeng

32、e they face is to overcome the limit of rock strength and abrasiveness that they can cut. In order to improve the cutting ability of roadheaders, extensive studies on bit and cutterhead designs have been conducted over the past two decades. The result of these studies show that bits must achieve dee

33、p penetrations to allow efficient cutting, high production, and prevent excessive bit wear. Deeper penetrations, however, create high forces on the head, which require high machine power and mass to react to these forces. Therefore, heavy duty hard rock machines with higher power and more mass have

34、been developed and introduced into the market by manufacturers in recent years. The performance of a machine with a given weight and installed cutterhead power is highly dependent on the head design and bit allocation. A well balanced cutterhead can produce much higher production rates due to reduce

35、d vibration of the head and improved rock bit contact. This paper presents the results of a study performed at the Earth Mechanics Institute (EMI) of the Colorado School of Mines (CSM) on the cutterhead design parameters and the approaches used to optimize the head design to minimize head vibrations

36、 and to maximize production rates. BACKGROUNDThe roadheader production rate and bit costs are controlled by several parameters including: Rock parameters, such as rock compressive and tensile strength, percent of hard and abrasive mineral content (i.e. quartz), rock fabric and matrix type and hardne

37、ss, existence of oriented mechanical properties in the mineral composite, and elastic behavior of rock material. Ground conditions, such as degree of jointing (RQD), joint conditions, ground water, fault zones, mixed face situations, and overall rock mass classification and support requirements. Mac

38、hine specification, including machine weight, cutterhead power, sumping, arcing, lifting, and lowering forces, cutterhead type (axial or transverse), bit type, size, and other characteristics, number and allocation of bits on the cutterhead, and capacity of the back up system. Operational parameters

39、, such as shape, size, and length of opening, inclination, turns or cross cuts, sequence of cutting and enlargement operation, number of rock formations in the tunneling path, ground support method, and work schedule meaning number of shifts per day and days per week etc.A combination of these param

40、eters determines the production capacity of a given machine in a certain rock formation and ground condition. A full account of parameters affecting roadheader performance and methods for production estimates is given in Neil 1994. Among these parameters, there are some that can not be controlled. T

41、hey include the rock and ground conditions as well as some operational parameters. Therefore, when a tunnel or drift is planned to be excavated under a certain condition with requirements specific to the particular project, the only controllable parameters are machine parameters. Normally, the first

42、 step is to determine whether roadheaders are feasible and can work with a reasonable production rate under given situation. Second step is to select the class and general specifications of machine to be considered for the job among the machines available in the market. Third step is to match the cu

43、rrent machine characteristics to the rock and ground conditions in hand to maximize its production rate. This can be accomplished through a thorough study of design parameters and design optimization practice. Also, for the existing machines already working in the job site, it is always beneficial t

44、o conduct such study to increase the productivity and reduce excavation costs. There have been numerous studies on possible modifications to achieve higher production rates when utilizing roadheaders. Also, the rock strength limit for roadheaders has been constantly challenged due to the need for a

45、mobile hard rock excavator in the industry. The following are some solutions proposed for increasing the productivity of roadheaders and extend their economic applicability to harder rocks: - change in material and design of bits, - improve the machine design to respond to the overall cutting head f

46、orces,- improve the cutterhead design.Bit Design and MaterialsThe first consideration in bit design relates to the limitations that the bit shape and rock mechanical properties impose on the forces applied to the rock. Obviously, for achieving the deeper penetrations, higher cutting forces are requi

47、red, and there is a limit to the maximum force that could be applied on the bits. Bit material must be abrasive resistant and ductile to withstand the impact loading while cutting in quartz rich rock types. Use of tungsten carbide with cobalt alloys has partially solved the problem and improved bit

48、life. Also, new brazing and surface treatment techniques to improve the abrasive resistance of the bit shanks have enhanced bit durability. In terms of bit shape, point attack (conical) bits, although they are not self sharpening as sometimes claimed, have increased bit life and efficiency due to th

49、eir ability to maintain a certain profile over an extended period of time. Use of these bits has almost become standard on heavy-duty roadheaders and has improved their productivity. Application of disc cutting technology on the roadheaders can improve the cutter life and enable these machines to at

50、tack harder rocks. A minidisc cutter has recently been developed at the Colorado School of Mines. The cuter is 12.5 cm (5 in) in diameter, and cantilever mounted on a 5 cm (2 in) shaft using a needle bearing. The forces required to achieve a certain depth of cut with the minidisc are substantially l

51、ower than the regular disc cutters due to the smaller foot print area. The minidisc is light weight, very easy to handle and replace, and requires about the same space as the standard bit blocks on the roadheader cutterheads. With these unique features, minidisc is a highly promising solution for ex

52、tending the application of roadheaders to excavation of harder rock formations. Machine DesignMachine design mainly refers to the machine mass and the ability to react to the cutting forces acting on the cutterhead. Machine mass and overall geometry determines the magnitude and direction of the maxi

53、mum forces that can be applied on the cutterhead. In essence, the force capacities of the machine (i.e. sumping, arcing, lowering, and lifting force) are dictated by the machine mass. Larger machine mass is usually associated with the larger cutterhead sizes to provide for the reaction forces needed

54、 to achieve high production rates. One of the limiting factors has traditionally been the sumping force or the thrust capacity of the machine. This force is normally supplied by the tractive effort of the crawlers, which is generally inefficient, especially in soft and wet floors. Installation of te

55、lescopic booms on new generation of roadheaders has, to a large extent, mitigated this problem. Telescopic booms provide the sumping force while the machine remains stationary. This allows a better use of machine mass and friction between the crawler and the ground. Installation of a set of stelling

56、 jacks to increase the arcing force capacity and higher installed cutterhead power have also contributed to improved cutting ability of the roadheaders. Occasionally, larger size arcing rams have been used to increase arcing force and allow for a better use of machine mass which increases production

57、 rates (while arcing), without the need for any change in machine hydraulic system. Cutterhead DesignBetween the two types of roadheader cutterheads, the ripping (transverse) and the milling (in line or axial) heads, the ripping type is more suitable for hard rock cutting. This is due to more effici

58、ent cutting during sumping, due to resultant forces acting along the boom (and not perpendicular), better use of machine mass, and more efficient cleaning of the face. On either type of heads, an optimal design is necessary to match the rock cutting characteristics and maximize the production rates.

59、 The design parameters include the spacing between bits, location of bits, their tilt angle, and the skew angle. The spacing between the bits must be optimized by analyzing rock failure behavior and anticipated depth of penetration. Also, cutterhead layout must be balanced by controlling the placement of the cutters to create an even bit (force) distribution to minimize vibra

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論