8-3-1邏輯推理.題庫教師版27頁_第1頁
8-3-1邏輯推理.題庫教師版27頁_第2頁
8-3-1邏輯推理.題庫教師版27頁_第3頁
8-3-1邏輯推理.題庫教師版27頁_第4頁
8-3-1邏輯推理.題庫教師版27頁_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、8-3邏輯推理教學目標1. 掌握邏輯推理的解題思路與基本方法:列表、假設、對比分析、數(shù)論分析法等2. 培養(yǎng)學生的邏輯推理能力,掌握解不同題型的突破口3. 能夠利用所學的數(shù)論等知識解復雜的邏輯推理題知識點撥邏輯推理作為數(shù)學思維中重要的一部分,經(jīng)常出現(xiàn)在各種數(shù)學競賽中,除此以外,邏輯推理還經(jīng)常作為專項的內(nèi)容出現(xiàn)在各類選拔考試,甚至是面向成年人的考試當中。對于學生學習數(shù)學來說,邏輯推理既有趣又可以開發(fā)智力,學生自主學習研究性比較高。本講我們主要從各個角度總結(jié)邏輯推理的解題方法。一列表推理法邏輯推理問題的顯著特點是層次多,條件縱橫交錯.如何從較繁雜的信息中選準突破口,層層剖析,一步步向結(jié)論靠近,是解決

2、問題的關鍵.因此在推理過程中,我們也常常采用列表的方式,把錯綜復雜的約束條件用符號和圖形表示出來,這樣可以借助幾何直觀,把令人眼花繚亂的條件變得一目了然,答案也就容易找到了.二、假設推理用假設法解邏輯推理問題,就是根據(jù)題目的幾種可能情況,逐一假設如果推出矛盾,那么假設不成立;如果推不出矛盾,而是符合題意,那么假設成立解題突破口:找題目所給的矛盾點進行假設三、體育比賽中的數(shù)學對于體育比賽形式的邏輯推理題,注意“一隊的勝、負、平”必然對應著“另一隊的負、勝、平”。有時綜合性的邏輯推理題需要將比賽情況用點以及連接這些點的線來表示,從整體考慮,通過數(shù)量比較、整數(shù)分解等方式尋找解題的突破口。四、計算中的

3、邏輯推理 能夠利用數(shù)論等知識通過計算解決邏輯推理題.例題精講模塊一、列表推理法【例 1】 劉剛、馬輝、李強三個男孩各有一個妹妹,六個人進行乒乓球混合雙打比賽事先規(guī)定:兄妹二人不許搭伴第一盤:劉剛和小麗對李強和小英;第二盤:李強和小紅對劉剛和馬輝的妹妹問:三個男孩的妹妹分別是誰?【解析】 因為兄妹二人不許搭伴,所以題目條件表明:劉剛與小麗、李強與小英、李強與小紅都不是兄妹由第二盤看出,小紅不是馬輝的妹妹將這些關系畫在左下表中,由左下表可得右下表劉剛與小紅、馬輝與小英、李強與小麗分別是兄妹【鞏固】 王文、張貝、李麗分別是跳傘、田徑、游泳運動員,現(xiàn)在知道:張貝從未上過天;跳傘運動員已得過兩塊金牌;李

4、麗還未得過第一名,她與田徑運動員同年出生.請根據(jù)上述情況判斷王文、張貝、李麗各是什么運動員?【解析】 為了能清楚地找到所給條件之間的關系,我們不妨運用列表法,列出下表,在表中“”表示是,“”表示不是,在任意一行或一列中,如果一格是“”,可推出其它兩格是“”由可知張貝、李麗都不是跳傘運動員,可填出第一行,即王文是跳傘運動員;由可知,李麗也不是田徑運動員,可填出第三列,即李麗是游泳運動員,則張貝是田徑運動員【鞏固】 李波、顧鋒、劉英三位老師共同擔負六年級某班的語文、數(shù)學、政治、體育、音樂和圖畫六門課的教學,每人教兩門現(xiàn)知道:1 顧鋒最年輕;2 李波喜歡與體育老師、數(shù)學老師交談;3 體育老師和圖畫老

5、師都比政治老師年齡大;4 顧鋒、音樂老師、語文老師經(jīng)常一起去游泳;5 劉英與語文老師是鄰居問:各人分別教哪兩門課程?【解析】 李波教語文、圖畫,顧鋒教數(shù)學、政治,劉英教音樂、體育由推知顧鋒教數(shù)學和政治;由推知劉英教體育;由推知李波教圖畫、語文【鞏固】 王平、宋丹、韓濤三個小學生都是少先隊的干部,一個是大隊長,一個是中隊長,一個是小隊長一次數(shù)學測驗,這三個人的成績是:韓濤比大隊長的成績好王平和中隊長的成績不相同中隊長比宋丹的成績差請你根據(jù)這三個人的成績,判斷一下,誰是大隊長呢?【解析】 根據(jù)條件和,王平和中隊長的成績不相同,中隊長比宋丹的成績差,可以斷定,王平不是中隊長,宋丹也不是中隊長,只有韓

6、濤當中隊長了王平和宋丹兩人誰是大隊長呢?由和,韓濤比大隊長的成績好,中隊長比宋丹的成績差,可以推斷出按成績高低排列的話,宋丹的成績比中隊長(韓濤)的成績好,韓濤的成績比大隊長的成績好這樣,宋丹、韓濤就都不是大隊長,那么,大隊長肯定是王平 【例 2】 張明、席輝和李剛在北京、上海和天津工作,他們的職業(yè)是工人、農(nóng)民和教師,已知:張明不在北京工作,席輝不在上海工作;在北京工作的不是教師;在上海工作的是工人;席輝不是農(nóng)民問:這三人各住哪里?各是什么職業(yè)?【解析】 這道題的關系要復雜一些,要求我們通過推理,弄清人物、工作地點、職業(yè)三者之間的關系三者的關系需要兩兩構(gòu)造三個表,即人物與地點,人物與職業(yè),地點

7、與職業(yè)三個表 我們先將題目條件中所給出的關系用下面的表來表示,由條件得到表,由條件、得到表,由條件得到表 因為各表中,每行每列只能有一個“”,所以表可填全為表由表知農(nóng)民在北京工作,又知席輝不是農(nóng)民,所以席輝不在北京工作,可以將表可填全完為表由表和表知得到:張明住在上海,是工人;席輝住在天津,是教師;李剛住在北京,是農(nóng)民方法二:由題目條件可知:席輝不在上海工作,而在上海工作的是工人,所以席輝不是工人,又不是農(nóng)民,那么席輝只能是教師,不在北京工作,就只能是在天津工作,那么張明在上海工作,是工人。李剛在北京,是農(nóng)民?!眷柟獭?甲、乙、丙三人,他們的籍貫分別是遼寧、廣西、山東,他們的職業(yè)分別是教師、工

8、人、演員已知:甲不是遼寧人,乙不是廣西人;遼寧人不是演員,廣西人是教師;乙不是工人求這三人各自的籍貫和職業(yè)【解析】 由題意可畫出下面三個表: 將表補全為表由表知,工人是遼寧人,而乙不是工人,所以乙不是遼寧人,由此可將表補全為表 所以,甲是廣西人,職業(yè)是教師;乙是山東人,職業(yè)是演員;丙是遼寧人,職業(yè)是工人方法二:將能判斷的條件先列入圖表中,廣西人是教師,但是乙不是廣西人,所以乙不是教師,乙又不是工人,所以乙為演員。在對應的地方打上“”,對應的行列均打“”。但是遼寧人不是演員,所以乙不是遼寧人,乙就是山東人,所以甲是廣西人,職業(yè)是教師;乙是山東人,職業(yè)是演員;丙是遼寧人,職業(yè)是工人?!眷柟獭?小明

9、、小芳、小花各愛好游泳、羽毛球、乒乓球中的一項,并分別在一小、二小、三小中的一所小學上學?,F(xiàn)知道:(1)小明不在一??;(2)小芳不在二小(3)愛好乒乓球的不在三?。唬?)愛好游泳的在一?。唬?)愛好游泳的不是小芳。問:三人上各愛好什么運動?各上哪所小學?【解析】 這道題比上例復雜,因為要判斷人、學校和愛好三個內(nèi)容。先將題目條件中給出的關系用下面的表1、表2、表3表示:因為各表中,每行每列只能有一個“”,所以表3可補全為表4。由表4、表2知道,愛好游泳的在一小,小芳不愛游泳,所以小芳不在一小。于是可將表1補全為表5。對照表5和表4,得到:小明在二小上學,愛好打乒乓球;小芳在三小上學,愛好打羽毛球

10、;小花在一小上學,愛好游泳。【鞏固】 小王、小張和小李一位是工人,一位是農(nóng)民,一位是教師,現(xiàn)在只知道:小李比教師年齡大;小王與農(nóng)民不同歲;農(nóng)民比小張年齡小。問:誰是工人?誰是農(nóng)民?誰是教師?【解析】 這道題目并不難,聰明的小朋友思考一下就能得到答案,但是今天我們通過這道題目一起來學習一個十分有用的方法:列表分析法。由題目條件可以知道:小李不是教師,小王不是農(nóng)民,小張不是農(nóng)民。由此得到左下表。表格中打“”表示肯定,打“”表示否定。因為左上表中,任一行、任一列只能有一個“”,其余是“”,所以小李是農(nóng)民,于是得到右上表。因為農(nóng)民小李比小張年齡小,又小李比教師年齡大,所以小張比教師年齡大,即小張不是教

11、師。因此得到左下表,從而得到右下表,即小張是工人,小李是農(nóng)民,小王是教師。例題中采用列表法,使得各種關系更明確。為了講解清楚,例題中畫了幾個表,實際解題時,不用畫這么多表,只在一個表中先后畫出各種關系即可。需要注意的是:第一步應將題目條件給出的關系畫在表上,然后再依次將分析推理出的關系畫在表上;每行每列只能有一個“”,如果出現(xiàn)了一個“”,它所在的行和列的其余格中都應畫“”。【例 3】 甲、乙、丙、丁四個人的職業(yè)分別是教師、醫(yī)生、律師、警察已知:教師不知道甲的職業(yè);醫(yī)生曾給乙治過?。宦蓭熓潜姆深檰枺ń?jīng)常見面);丁不是律師;乙和丙從未見過面那么甲、乙、丙、丁的職業(yè)依次是: 【解析】 律師、教師

12、、警察由可以知道丙不是律師,但是他見過律師,再由知乙不是律師,又由可知甲是律師于是由和知丙不是教師,由和知丙不是醫(yī)生,從而丙是警察再由知乙是教師,丁是醫(yī)生列表如下(列表的好處在于直觀明了,不會犯錯誤):【鞏固】 徐、王、陳、趙四位師傅分別是工廠的木工、車工、電工和鉗工,他們都是象棋迷。(1)電工只和車工下棋;(2)王、陳兩位師傅經(jīng)常與木工下棋;(3)徐師傅與電工下棋互有勝負;(4)陳師傅比鉗工下得好。問:徐、王、陳、趙四位師傅各從事什么工種?【解析】 徐是車工,王是鉗工,陳是木工,趙是電工?!眷柟獭?甲、乙、丙三個小學生都是少先隊的干部,一個是大隊長,一個是中隊長,一個是小隊長一次數(shù)學測驗,這

13、三個人的成績是:丙比大隊長的成績好甲和中隊長的成績不相同中隊長比乙的成績差請你根據(jù)這三個人的成績,判斷一下,誰是大隊長呢?【解析】 根據(jù)條件和,甲和中隊長的成績不相同,中隊長比乙的成績差,可以斷定,甲不是中隊長,乙也不是中隊長,只有丙是中隊長了(也可以列表確定中隊長)甲和乙兩人誰是大隊長呢?由和,丙比大隊長的成績好,中隊長比乙的成績差,可以推斷出按成績高低排列的話,乙的成績比中隊長(丙)的成績好,丙的成績比大隊長的成績好這樣,乙、丙就都不是大隊長,那么,大隊長肯定是甲【鞏固】 甲、乙、丙、丁在談論他們及他們的同學何偉的居住地甲說:“我和乙都住在北京,丙住在天津”乙說:“我和丁都住在上海,丙住在

14、天津”丙說:“我和甲都不住在北京,何偉住在南京”丁說:“甲和乙都住在北京,我住在廣州”假定他們每個人都說了兩句真話,一句假話問:不在場的何偉住在哪兒?【解析】 因為甲、乙都說“丙住在天津,”我們可以假設這句話是假話,那么甲、乙的前兩句應當都是真話,推出乙既住在北京又住在上海,矛盾所以假設不成立,即“丙住在天津”是真話因為甲的前兩句話中有一句假話,而甲、丁兩人的前兩句話相同,所以丁的第三句話“我住在廣州”是真的由此知乙的第二句話“丁住在上海”是假話,第一句“我住在上海”是真話;進而推知甲的第二句是假話,第一句“我住在北京”是真話;最后推知丙的第二句話是假話,第三句“何偉住在南京”是真話所以,何偉

15、住在南京【鞏固】 ,分別是中國、日本、美國和法國人.已知:和中國人是醫(yī)生;和法國人是教師;和日本人職業(yè)不同;不會看病.問:,各是哪國人,【解析】 有可知,、都不是中國人和法國人,再由知,也不是中國人,所以,是中國人,由,日本人也是教師,從而推知,是法國人,得下表:最后由是中國人及,推知日本人是教師,再由知是日本人.【鞏固】 根據(jù)條件判斷旅游團去了、中的哪幾個地方?如果去,就必須去;、兩地至少去一地;、兩地只能去一地;、兩地要去都去,要不去都不去;若去,則、兩地必須去.【解析】 從入手,分別假設去或:若去則不能去,也不能去,只能去.必須去、,與不能去矛盾.所以不能去假設去:必去,需去,必須去、,

16、去必須去,與、不能同去矛盾,所以不能去綜上只能去、.【例 4】 甲、乙、丙、丁每人只會中、英、法、日四種語言中的兩種,其中有一種語言只有一人會說他們在一起交談可有趣啦:乙不會說英語,當甲與丙交談時,卻請他當翻譯;甲會日語,丁不會日語,但他們卻能相互交談;乙、丙、丁找不到三人都會的語言;沒有人同時會日、法兩種語言請問:甲、乙、丙、丁各會哪兩種語言?【解析】 由可得下表,其中丙不會日語是因為甲會日語,且甲與丙交談需要翻譯由下表看出,甲會的另一種語言不是中文就是英語先假設甲會說中文由知,丁也會中文;由知丙不會中文,再由每人會兩種語言,知丙會英、法語(見左下表:由推知乙會中文和法語;再由及每人會兩種語

17、言,推知丁會英語(見右下表)結(jié)果符合題意再假設甲會說英語由知,丁也會英語;由知丙不會英語,再由每人會兩種語言,知丙會中文和法語(見左下表);由 推知,乙會中文和日語;再由及每人會兩種語言,推知丁會法語(見右下表)右下表與“有一種語言只有一人會說”矛盾假設不成立所以甲會中、日語,乙會中、法語,丙會英、法語,丁會中、英語【鞏固】 寶寶、貝貝、聰聰每人有兩個外號,人們有時以“數(shù)學博士”、“短跑健將”、“跳高冠軍”、“小畫家”、“大作家”和“歌唱家”稱呼他們,此外:數(shù)學博士夸跳高冠軍跳的高跳高冠軍和大作家常與寶寶一起看電影短跑健將請小畫家畫賀年卡數(shù)學博士和小畫家關系很好貝貝向大作家借過書聰聰下象棋常贏

18、貝貝和小畫家問:寶寶、貝貝、聰聰各有哪兩個外號嗎?【解析】 由知,寶寶不是跳高冠軍和大作家;由 知,貝貝不是大作家;由知,貝貝、聰聰都不是小畫家,可以得到下表:因為寶寶是小畫家,所以由知寶寶不是短跑健將和數(shù)學博士,推知寶寶是歌唱家,因為聰聰是大作家,所以由知聰聰不是跳高冠軍,推知貝貝是跳高冠軍,因為貝貝是跳高冠軍,所以由知貝貝不是數(shù)學博士,將上面結(jié)論依次填入上表,得到下表:所以,寶寶是小畫家和歌唱家,貝貝是短跑健將和跳高冠軍,聰聰是數(shù)學博士和大作家【例 5】 (年湖北省“創(chuàng)新杯”初賽)六年級四個班進行數(shù)學競賽,小明猜想比賽的結(jié)果是:班第一名,班第二名,班第三名, 班第四名小華猜想比賽的結(jié)果是:

19、班第一名,班第二名,班第三名,班第四名結(jié)果只有小華猜到的班為第二名是正確的那么這次競賽的名次是 班第一名, 班第二名, 班第三名, 班第四名?!窘馕觥?方法一:依題意,班不為第一名也不為第三名,那么班為第四名同樣,班不為第二名也不為第一名,那么班為第三名班不為第三名也不為第四名,那么班為第一名故第一名到第四名依次為班,班,班,班方法二:我們可以將兩人的猜測結(jié)果列成表格形式,將小明猜想結(jié)果用“”表示,小華猜測結(jié)果用“”表示,列表如下:由題意知只有小華猜到的班為第二名正確,其他的全是錯誤的,所以很容易確定各班名次(打的即為正確的名次)方法二:題目中只有小華猜到4班為第二名是正確的,那么其他的猜想均

20、為錯誤的。在其對應的地方打“”,正確的則打“”。【鞏固】 甲、乙、丙、丁、戊五名同學參加推鉛球比賽,通過抽簽決定出賽順序在未公布順序前每人都對出賽順序進行了猜測甲猜:乙第三,丙第五乙猜:戊第四,丁第五丙猜:甲第一,戊第四丁猜:丙第一,乙第二戊猜:甲第三,丁第四老師說每人的出賽順序都至少被一人所猜中,則出賽順序中,第一是_;第三是_【解析】 題中每個人都猜了另外兩個人的出場順序,每個人的出場順序也都被另外兩個人猜過,其中戊被乙和丙猜的都是第四,由于每人的出賽順序都至少被一人所猜中,所以戊是第四(否則戊的出賽順序沒有人猜中),以此為突破口。由于戊是第四,則在第四列其余地方均打“”則丁不能第四,所以

21、丁的出賽順序被乙猜中,為第五,則丙不能是第五,丙只能是第一,甲不能是第一,故甲是第三,乙是第二,所以答案為:第一是丙,第三是甲【例 6】 紅、黃、藍、白、紫五種顏色的珠子各一顆,分別用紙包著,在桌子上排成一行,有、五個人,猜各包珠子的顏色,每人只猜兩包猜:第二包是紫的,第三包是黃的;猜:第二包是藍的,第四包是紅的;猜:第一包是紅的,第五包是白的;猜:第三包是藍的,第四包是白的;猜:第二包是黃的,第五包是紫的猜完后,打開各紙包一看發(fā)現(xiàn)每人都只猜對了一包,并且每包只有一人猜對請你判斷他們各猜對了其中的哪一包?【解析】 方法一:題目要求、五個人在猜每包珠子的顏色時每人只猜兩包且每人都只猜對了一包每包

22、只有一人猜對,所以觀察五包珠子中第一包只有猜,所以猜對了第一包,又根據(jù)每人只猜對了一種,所以猜第五包是白的,猜錯了;第五包只有、兩人猜,所以猜第五包是紫的,猜對了;那么猜第二包是黃的,猜錯了;紫顏色的珠子,只有、兩人猜,那么猜第二包是紫的,猜錯了;第二包有,三人猜,其中,都猜錯了,所以猜第二包是藍的,猜對了;那么猜第四包是紅的,猜錯了;所以猜對的是第四包,是白的猜第三包是藍的,也猜錯了;所以猜對的是第三包,是黃的;總結(jié)以上推理判斷,猜對了第三包是黃的,猜對了第二包是藍的,猜對了第一包是紅的,猜對了第四包是白的,猜對了第五包是紫的方法二:分析同方法一,第一包只有一人猜對,所以第一包為紅色,在第一

23、行的其余地方打上“”第四包不為紅色,第四包為白色,白色不能為第五包,第五包就為紫色,同理可知其余各包顏色。【鞏固】 五封信,信封完全相同,里面分別夾著紅、藍、黃、白、紫五種顏色的卡片現(xiàn)在把它們按順序排成一行,讓、五人猜每只信封內(nèi)所裝卡片的顏色猜:第2封內(nèi)是紫色,第3封是黃色;猜:第2封內(nèi)是藍色,第4封是紅色;猜:第1封內(nèi)是紅色,第5封是白色;猜:第3封內(nèi)是藍色,第4封是白色;猜:第2封內(nèi)是黃色,第5封是紫色然后,拆開信封一看,每人都猜對一種顏色,而且每封都有一人猜中請你根據(jù)這些條件,再猜猜,每封信中夾什么顏色的卡片?【解析】 把已知條件簡明地記錄在表格中選擇其中一只信封作為“突破口”比如第3封

24、,猜的是黃色,猜的卻是藍色由已知條件,這只信封內(nèi)的卡片不是藍色,就是黃色假如第3封是藍色,那么逐步推理可導出矛盾:白色卡片沒人猜對這說明假設不正確,第3封內(nèi)應是黃色由此推出其它各封內(nèi)的顏色【鞏固】 (2008年北京“數(shù)學解題能力展示”讀者評選活動)老師在3個小箱中各放一個彩色球,讓小明、小強、小亮、小佳四人猜一下各個箱子中放了什么顏色的球小明說:“號箱中放的是黃色的,號箱中放的是黑色的,號箱中放的是紅色的”小亮說:“號箱中放的是橙色的,號箱中放的是黑色的,號箱中放的是綠色的”小強說:“號箱中放的是紫色的,號箱中放的是黃色的,號箱中放的是藍色的”小佳說:“號箱中放的是橙色的,號箱中放的是綠色的,

25、號箱中放的是紫色的”老師說:“你們中有一個人恰好猜對了兩個,其余的三人都只猜對一個”那么號箱子中放的是_色的球【解析】 由于猜中的總次數(shù)為次,所以有一個箱子至少被猜中了次以上,從而這個箱子只能是號箱,推理得出只能是小亮對了次,其他人只對一次,所以號箱只能是橙色的,那么號箱的顏色是藍色的【鞏固】 四張卡片上分別寫著奧、林、匹、克四個字(一張上寫一個字),取出三張字朝下放在桌上,、三人分別猜每張卡片上是什么字,猜的情況見下表:結(jié)果,有一人一張也沒猜中,一人猜中兩張,另一人猜中三張.問:這三張卡片上各寫著什么字【解析】 、有兩張猜的相同,必有一人全對,一人對兩張,因此,全錯,推知全對.【例 7】 老

26、師讓小新把小胖、小貝、小丸子、小淘氣、小馬虎的作業(yè)本帶回去,小新見到這五人后就一人給了一本,結(jié)果全發(fā)錯了現(xiàn)在知道:小胖拿的不是小貝的,也不是小淘氣的;小貝拿的不是小丸子的,也不是小淘氣的;小丸子拿的不是小貝的,也不是小馬虎的;小淘氣拿的不是小丸子的,也不是小馬虎的;小馬虎拿的不是小淘氣的,也不是小胖的另外,沒有兩人相互拿錯(例如小胖拿小貝的,小貝拿小胖的)問:小丸子拿的是誰的本?小丸子的本被誰拿走了?【解析】 根據(jù)“全發(fā)錯了”及條件,可以得到下表:由表1看出,小淘氣的本被小丸子拿了此時,再繼續(xù)推理分析不大好下手,我們可用假設法由上表知,小胖拿的本不是小丸子的就是小馬虎的先假設小胖拿了小丸子的本

27、于是得到下表,表中小貝拿小馬虎的本,小馬虎拿小貝的本兩人相互拿錯,不合題意再假設小胖拿小馬虎的本于是又可得表,經(jīng)檢驗,下表符合題意所以小丸子拿了小淘氣的本,小丸子的本被小馬虎拿去了模塊二、假設推理【例 8】 甲、乙、丙三人,一個總說謊,一個從不說謊,一個有時說謊有一次談到他們的職業(yè)甲說:“我是油漆匠,乙是鋼琴師,丙是建筑師”乙說:“我是醫(yī)生,丙是警察,你如果問甲,甲會說他是油漆匠”丙說:“乙是鋼琴師,甲是建筑師,我是警察”你知道誰總說謊嗎?【解析】 甲如果甲從不說謊,那么乙的最后一句、丙的第一句都對,沒有總說謊的人,矛盾;同理,如果丙從不說謊,也將推出矛盾【鞏固】 在神話王國內(nèi),居民不是騎士就

28、是騙子,騎士不說謊,騙子永遠說謊,有一天國王遇到該國的居民小白、小黑、小藍,小白說:“小藍是騎士,小黑是騙子”,小藍說:“小白和我不同,一個是騎士,一個是騙子”國王很快判斷出誰是騎士,誰是騙子你能判斷出嗎?【解析】 假設小白是騎士(說實話),則小藍是騎士,小黑是騙子;又因為小藍是騎士,那么小白、小藍不同,一個是騎士,一個是騙子,與小白、小藍均為騎士矛盾假設小白是騙子(說假話),那么小藍是騙子,小黑是騎士,又因為小藍是騙子,所以小白、小藍不同是假話因此,小白、小藍是騙子,小黑是騎士.【鞏固】 一個騙子和一個老實人一路同行,騙子總是講假話,老實人總是講真話請?zhí)嵋粋€盡量簡單的問題,使兩人的回答相同這

29、個問題可以是 .【解析】 這個問題可以是:你是老實人嗎?如果問的問題是客觀的,也就是說對于這兩個人來說真正的答案是一樣的話,那么他們的回答肯定不一樣所以要問一個與他們自身相關的問題,例如你是老實人嗎?或者問你是騙子嗎?這樣他們的回答才會一樣【鞏固】 甲說:“乙和丙都說謊?!币艺f:“甲和丙都說謊?!北f:“甲和乙都說謊?!备鶕?jù)三人所說,你判斷一下,下面的結(jié)論哪一個正確:(1)三人都說謊;(2)三人都不說謊;(3)三人中只有一人說謊;(4)三人中只有一人不說謊。【解析】 (4)正確?!纠?9】 某地質(zhì)學院的學生對一種礦石進行觀察和鑒別。甲判斷:不是鐵,也不是銅。乙判斷:不是鐵,而是錫。丙判斷:不是

30、錫,而是鐵。經(jīng)化驗證明:有一個人的判斷完全正確,有一個人說對了一半,而另一個人完全說錯了。你知道三人中誰是對的,誰是錯的,誰是只對一半的嗎?【解析】 丙全說對了,甲說對了一半,乙全說錯了。先假設甲全對,推出矛盾后,再設乙全對,又推出矛盾,則說明丙全對,甲說對了一半,乙全說錯了。【鞏固】 三只小猴子聰聰、淘淘、皮皮見到一個水果,他們分別判斷這是什么水果:聰聰判斷:不是蘋果,也不是梨淘淘判斷:不是蘋果,而是桃子皮皮判斷:不是桃子,而是蘋果老猴子告訴他們:有一只小猴子的判斷完全正確,有一只小猴子說對了一半,而另一只小猴子完全說錯了你知道三只小猴中誰是對的,誰是錯的,誰是只對一半的嗎?【解析】 先設聰

31、聰全對,不是蘋果,也不是梨只能是桃子,那么淘淘兩句也都說對了,推出矛盾;再設淘淘全對,不是蘋果,而是桃子,推出這個水果是桃子,那么聰聰說的也都對了,又推出矛盾;則說明皮皮全對,那么這種水果是蘋果,聰聰說對了一半,淘淘全說錯了【例 10】 (年太原福布斯迎奧運數(shù)學展示活動)名運動員參加一項比賽,賽前,甲說:“我肯定是最后一名”乙說:“我不可能是第一名,也不可能是最后一名”丙說:“我絕對不會得最后一名”丁說:“我肯定得第一名”賽后,發(fā)現(xiàn)他們?nèi)说念A測中只有一人是錯誤的請問誰的預測是錯誤的?【解析】 假設甲的預測是錯的,那么其他三人的預測都是對的,那么甲不是最后一名,乙和丙也不是最后一名,丁是第一名,

32、這樣的話沒有人是最后一名,矛盾所以甲的預測是對的,甲是最后一名,那么丙的預測也是對的如果乙的預測是錯的,那么乙是第一名,而丁的預測是對的,丁也是第一名,矛盾所以乙的預測是對的,丁的預測是錯的【鞏固】 甲、乙、丙、丁在比較他們的身高,甲說:“我最高”乙說:“我不最矮”丙說:“我沒甲高,但還有人比我矮”丁說:“我最矮”實際測量的結(jié)果表明,只有一人說錯了請將他們按身高次序從高到矮排列出來【解析】 丁不可能說錯,否則就沒有人最矮了由此知乙沒有說錯若甲也沒有說錯,則沒有人說錯,矛盾所以只有甲一人說錯所以丁是最矮的,甲不是最高的,丙沒甲高,但還有人比他矮,那么只能是甲第二高,丙第三高,乙最高所以他們的身高

33、次序為乙、甲、丙、丁【鞏固】 (年第七屆希望杯一試試題)百米決賽前,小芳對參賽的五名選手的名次作了預測,比賽的結(jié)果同她預測的名次全不相同由下圖知小芳預測為第一名的選手的實際名次是第 名【解析】 假設小芳預測第一名、第二名、第三名、第四名、第五名對應的人分別是甲、乙、丙、丁、戊,由小芳說的話知第四名丁就是實際名次的第一名, 預測的第二名乙就是實際名次的第三名, 預測的第三名丙就是實際名次的第二名,因此實際的第一名、第二名、第三名的人分別是丁、丙、乙,又知道比賽的結(jié)果同她預測的名次全不相同,所以小芳預測的第五名戊只能是實際的第四名了,這樣實際名次的第五名只能是小芳預測的第一名甲了.(如下表所述)【

34、例 11】 (年臺灣第一屆小學數(shù)學世界邀請賽)在期末考試前,學生、分別預測他們的成績是、或,評分標準是比 好,比好,比好說:“我們的成績都將不相同若我的成績得,則將得”說:“若的成績得,則將得的成績將比好”說:“若的成績不是得到,則將得若我的成績得到,則的成績將不是”說:“若的成績得到,則我將得到若的成績不是得到,則我也將不會得到”當期末考試的成績公布,每位學生所得到的成績都完全符合他們的預測請問這四位學生的成績分別是什么?【解析】 由于每位學生所得到的成績都完全符合他們的預測,所以說:“的成績將比好”是正確的,這樣將不可能得,不可能得這樣不可能得(否則得)如果得,那么將得由于的成績不是得到,

35、那么將得,這與得矛盾所以不得如果得,那么將得到但這樣的成績將不可能比好,矛盾所以不得由于、均不得,那么只有得如果得,那么的成績將不是這樣的成績將是,的成績將是,矛盾所以不得由于不得、,所以得由于的成績比好,所以剩下的和只能是得,得所以、的成績分別是、【鞏固】 一位法官在審理一起盜竊案中,對涉及到的四名嫌疑犯甲、乙、丙、丁進行了審問四人分別供述如下: 甲說:“罪犯在乙、丙、丁三人之中” 乙說:“我沒有作案,是丙偷的” 丙說:“在甲和丁中間有一人是罪犯” 丁說:“乙說的是事實”經(jīng)過充分的調(diào)查,證實這四人中有兩人說了真話,另外兩人說的是假話同學們,請你做一名公正的法官,對此案進行裁決,確認誰是罪犯?

36、【解析】 如果甲說的是假話,那么剩下三人中有一人說的也是假話,另外兩人說的是真話可是乙和丁兩人的觀點一致,所以在剩下的三人中只能是丙說了假話,乙和丁說的都是真話即“丙是盜竊犯”這樣一來,甲說的也是對的,不是假話這樣,前后就產(chǎn)生了矛盾所以甲說的不可能是假話,只能是真話同理,剩下的三人中只能是丙說真話乙和丁說的是假話,即丙不是罪犯,乙是罪犯又由甲所述為真話,即甲不是罪犯再由丙所述為真話,即丁是罪犯所以乙和丁是盜竊犯【鞏固】 四個小朋友寶寶、星星、強強和樂樂在院子里踢足球,一陣響聲,驚動了正在讀書的陸老師,陸老師跑出來查看,發(fā)現(xiàn)一塊窗戶玻璃被打破了。陸老師問:“是誰打破了玻璃?”寶寶說:“是星星無意

37、打破的?!毙切钦f:“是樂樂打破的?!睒窐氛f:“星星說謊?!睆姀娬f:“反正不是我打破的。”如果只有一個孩子說了實話,那么這個孩子是誰?是誰打破了玻璃?【解析】 因為星星和樂樂說的正好相反,所以必是一對一錯,我們可以逐一假設檢驗。 假設星星說得對,即玻璃窗是樂樂打破的,那么強強也說對了,這與“只有一個孩子說了實話”矛盾,所以星星說錯了。 假設樂樂說對了,按題意其他孩子就都說錯了。由強強說錯了,推知玻璃是強強打破的。寶寶、星星確實都說錯了。符合題意。 所以是強強打破了玻璃?!眷柟獭?(年春武漢明心奧數(shù)挑戰(zhàn)賽)名謀殺案的嫌疑人,在犯罪現(xiàn)場被警察詢問,其中有一名是兇手下面?zhèn)€人的供述中,只有 句是對的:說

38、:是殺人犯;說:我是無辜的;說:不是殺人犯;說:在說謊;說:說的是實話在這個人中, 是兇手【解析】 與判斷相同,要么都對,要么都錯假設與都錯,即兇手是,那么也錯,就出現(xiàn)了句錯的,與“有句是對的”矛盾所以與都是對的余下的人中還有人判斷是對的,由于與互相矛盾,所以這兩個人中必有一個是對的,一個是錯的,由于只有句是對的,那么必定是錯的,所以是兇手【鞏固】 (年第十二屆香港保良局小學數(shù)學世界邀請賽個人賽)三位女孩、進行百米賽跑,裁判、在賽前猜測她們之間的名次。說:“我猜是第一名?!闭f:“我猜不會是最后一名?!闭f:“我猜不會是第一名?!背煽兘視院笠阎≈挥幸晃徊门械牟聹y是正確的,請問哪位女孩得第一名?【

39、解析】 假設是第一名,那么猜測正確,猜測正確,出現(xiàn)矛盾。假設是第一名,那么與猜測錯誤,而當為第二名時,猜測正確。假設為第一名,那么、猜測正確,出現(xiàn)矛盾,所以第一名是?!眷柟獭?小強、小明、小勇三人參加數(shù)學競賽,他們分別來自甲、乙、丙三個學校,并分別獲得一、二、三等獎已知:小強不是甲校選手;小明不是乙校選手;甲校的選手不是一等獎;乙校的選手得二等獎;小明不是三等獎根據(jù)上述情況,可判斷出小勇是校的選手,他得的是等獎【解析】 甲校;三等獎由、小明得的不是二等獎,由知小明得的不是三等獎,所以小明得的是-等獎,由、知小明是丙校的,由知小強是乙校的,所以小勇是甲校的,他得的是三等獎【鞏固】 甲,乙,丙,丁

40、四個同學中有兩個同學在假日為街道做好事,班主任把這四人找來了解情況,四人分別回答如下甲:“丙、丁兩人中有人做了好事”乙:“丙做了好事,我沒做”丙:“甲、丁中只有一人做了好事”?。骸耙艺f的是事實”最后通過仔細分析調(diào)查,發(fā)現(xiàn)四人中有兩人說的是事實,另兩人說的與事實有出入到底是誰做了好事?【解析】 我們用假設法來解決題目說四人中有兩人說的是事實,另兩人說的與事實有出入注意,此處的“與事實有出入”表示不完全與事實相符,比如,當乙、丙都做了好事,或乙、丙都沒做好事,或乙做了好事而丙沒做好事時,乙說的話都與事實有出入 因為乙與丁說的是一樣的,所以只有兩種可能,要么乙與丁正確,甲與丙錯;要么乙與丁錯,甲與丙

41、正確假設乙與丁說的話正確這時丙做了好事,甲說丙、丁兩人中有人做了好事,甲說的話也正確,這與題目條件只有“兩人說的是事實”相矛盾所以假設錯誤 假設甲與丙說的話正確那么做好事的是甲與丙,或乙與丁,或丙與丁若做好事的是甲與丙,或丙與丁,則乙說的話也正確,與題意不符;若做好事的是乙與丁,則乙說的話與事實不符,符合題意綜上所述,做好事的是乙與丁【例 12】 甲、乙、丙、丁四人同時參加全國小學數(shù)學夏令營。賽前甲、乙、丙分別做了預測。甲說:“丙第名,我第名?!币艺f:“我第名,丁第名?!北f:“丁第名,我第 名?!背煽兘視院螅l(fā)現(xiàn)他們每人只說對了一半,你能說出他們的名次嗎?【解析】 我們以“他們每人只說對了一

42、半”作為前提,進行邏輯推理。 假設甲說的第一句話“丙第名”是對的,第二句話“我第名”是錯的。由此推知乙說的“我第名”是錯的,“丁第名”是對的;丙說的“丁第名”是錯的,“丙第名”是對的。這與假設“丙第名是對的”矛盾,所以假設不成立。 再假設甲的第二句話“我第名”是對的,那么丙說的第二句“我第名”是錯的,從而丙說的第一句話“丁第名”是對的;由此推出乙說的“丁第名”是錯的,“我第名”是對的。至此可以排出名次順序:乙第名、丁第名、甲第名、丙第名?!眷柟獭?編號分別為1,2,3,4的四位同學參加了學校的110米欄比賽,獲得了全校的前四名,1號同學說:“3號比我先到達終點.”得第三名的同學說:“1號不是第

43、四名.”而另一位同學說:“我們的號碼與我們所得的名次都不相同.”聰明的同學們,你們能說出這四位同學各自所得到的名次嗎?【解析】 從得第三名同學的話中可以推知:1號不是第三名,也不是第四名;而1號同學又說“3號比我先到終點”,這說明1號同學不是第一名,這樣我們可以得知1號同學是第二名,于是3號同學是第一名, 而另一位同學說:“我們的號碼與我們所得的名次都不相同.”,這樣4號不是第四名,只能是第三名,所以獲得第四名的同學是2號.【鞏固】 在一次數(shù)學競賽中,五位同學分別得了前五名(沒有并列同一名次的),關于各人的名次大家作出了下面的猜測:說:“第二名是,第三名是” 說:“第二名是,第四名是” 說:“

44、第一名是,第五名是” 說:“第三名是,第四名是” 說:“第二名是,第五名是”結(jié)果每人都只猜對了一半,他們的名次如何?【解析】 假設猜的第一句是真的,那么猜的第二句是真的,即第四名是,那么猜的“是第一名”是錯的,是第五名,那么猜的是第三名是對的,那么就是第一名,從而說的全是錯的,所以假設不成立所以猜的第二句是真的,即是第三名,那么猜的第一句是錯的,從而是第四名,所以猜的第二句是錯的,是第一名,從而猜的是第二名是對的,猜的第五名是正確,所以,第一名是,第二名是,第三名是,第四名是,第五名是【例 13】 傳說有個說謊國,這個國家的男人在星期四、五、六、日說真話,在星期一、二、三說假話;女人在星期一、

45、二、三、日說真話,在星期四、五、六說假話有一天,一個人到說謊國去旅游,他在那里認識了一男一女男人說:“昨天我說的是假話”,女人說:“昨天也是我說假話的日子”這下,那個外來的游人可發(fā)愁了,到底今天星期幾呢?請同學們根據(jù)他們說的話,判斷一下今天是星期幾呢?【解析】 假設男人今天說的是真話,那么今天是星期四、五、六、日其中的一天,而且今天的前一天男人說的是假話,所以,根據(jù)男人的話,確定今天是星期四,所以女人說的話是假話,昨天也就是星期三女人說的是真話,符合題意,所以,今天是星期四.【鞏固】 從A,B,C,D,E,F(xiàn)六種產(chǎn)品中挑選出部分產(chǎn)品去參加博覽會。根據(jù)挑選規(guī)則,參展產(chǎn)品滿足下列要求:(1)A,B

46、兩種產(chǎn)品中至少選一種;(2)A,D兩種產(chǎn)品不能同時入選;(3)A,E,F(xiàn)三種產(chǎn)品中要選兩種;(4)B,C兩種產(chǎn)品都入選或都不能入選;(5)C,D兩種產(chǎn)品中選一種;(6)若D種產(chǎn)品不入選,則E種也不能入選。問:哪幾種產(chǎn)品被選中參展?【解析】 用假設法。從條件(1)開始,有三種情況:假設選A不B選,由(2)知D不能入選,再由(5)知C入選,再由(4)推知C,B同時入選,與前面假設不選B矛盾。假設不成立。假設選B不選A,由(3)知選E,F(xiàn),由(6)知D入選,再由(5)知C不入選,再由(4)推知B,C都不入選,與假設選B矛盾。假設不成立。假設A,B都入選,由(2)知D不入選,由(6)知E也不入選,再由

47、(3)知F入選,由(4)知C入選。符合題意。因此,A,B,C,F(xiàn)選中參展?!纠?14】 三年級一班新轉(zhuǎn)來三名學生,班主任問他們?nèi)说哪挲g劉強說:“我12歲,比陳紅小2歲,比李麗大1歲”陳紅說:“我不是年齡最小的,李麗和我差3歲,李麗是15歲”李麗說:“我比劉強年歲小,劉強13歲,陳紅比劉強大3歲”這三位學生在他們每人說的三句話中,都有一句是錯的請你幫助班主任分析出他們?nèi)烁魇嵌嗌贇q?【解析】 經(jīng)過審題,仔細分析這九句話,不難發(fā)現(xiàn)有兩句話是相互矛盾的一句話是劉強說的第一句話:“我12歲”,另一句話是李麗說的第二句話:“劉強13歲”這兩句話不能都真,必有一句是假的為了確定這兩句話的真假性可以先假設

48、某一句為真,如果推不出矛盾,本題就獲得了解決;如果推出矛盾,就說明這句話是假的,從而也就找到了突破口先假設劉強說的第一句話“我12歲”為真,那么李麗說的第二句話“劉強13歲”就為假,因此李麗的另外兩句話就應該是真話,從“陳紅比劉強大3歲”就推出陳紅是15歲;又從“我比劉強年歲小”推出李麗小于12歲可是這樣一來,陳紅說的三句話中,“李麗和我差3歲”和“李麗15歲”這兩句話都不能成立,這與本題中的要求(“每人說的三句話中,都有一句是錯的”,即三句話中有兩句話是真的)相矛盾因此,劉強說的“我12歲”這句話是假的由于劉強說的第一句話是假的,所以后兩句話就是真的因此,李麗說的第三句話“陳紅比劉強大3歲”

49、就是假的,所以,李麗說的第二句話“劉強13歲”就是真的于是就可以推出:李麗12歲,陳紅15歲,劉強13歲【例 15】 (2008年日本小學算術奧林匹克大賽決賽)甲和乙做猜數(shù)的游戲。首先,甲在紙上寫個各位數(shù)字都不同的四位數(shù),寫好后將紙翻過來。不讓乙看到,然后讓乙猜這個四位數(shù)的各位數(shù)字。如果數(shù)字和位數(shù)都猜對了就是,如果數(shù)字對而位數(shù)不對就是。例如:甲寫的是,乙猜的是,那么就是個,個。請閱讀以下對話并回答問題: 乙:“我猜”,甲:“個,個。”乙:“?”,甲:“也是個,個。”乙:“?”,甲:“也是個,個。”乙:“呢?”,甲:“個。”乙:“哇,猜不著呀,呢?”甲:“也是個?!保?):請從以上的對話中答出甲

50、最可能寫的個四位數(shù)。后來,甲發(fā)現(xiàn)自己剛才的回答中對四位數(shù)的判斷有誤。甲:“對不起,剛才有搞錯的?!币遥骸鞍?!那么”甲“只是個數(shù)字搞錯了,在剛才說到的數(shù)字中,只是對的判斷有誤,正確的回答應該是個,個?!币摇吧缘纫粫?,??!我知道啦!甲寫的四位數(shù)是 嗎”?甲:“對啦!你真棒!”(2):請問甲寫的這個四位數(shù)是什么?【解析】 如下表:由1、4次猜測結(jié)果知,2到9中包含了正確數(shù)字中的全部四位數(shù)字,也即甲寫的數(shù)字各位都不是0或1;由2、3次猜測結(jié)果,同理知甲寫的數(shù)字各位都不是1或4;再考察第3、4次猜測結(jié)果,由于其中的0和4一定是錯的,而且兩次各猜對了正確數(shù)字四位數(shù)中的兩位,可以先假設甲寫的數(shù)字各位上沒有

51、3,那么甲寫的數(shù)字各位就是2、5、7、8,那么第5次猜測的結(jié)果就應該是(0,1)或者(1,0)而非(0,2)。因此甲寫的數(shù)字一定有一位是3;再由第5次猜測結(jié)果,甲所寫的數(shù)字各位有且只有6、8、9中的一個;于是由第1次猜測結(jié)果,甲所寫的數(shù)字中一定有一位是5再綜合第3、5次猜測結(jié)果,知甲所寫的數(shù)字各位上沒有8,而一定有且只有6、9其一根據(jù)第2次的猜測結(jié)果,甲所寫的數(shù)字應該有一位是2、7其一。假定第1、3次猜測中位數(shù)對的數(shù)字是5,那么根據(jù)第3、5次的猜測結(jié)果可以判斷出3在甲所寫的數(shù)字的個位上于是由第2次猜測結(jié)果,2或7一定是數(shù)字對而位數(shù)不對的,那么6或9一定是數(shù)字對且位數(shù)對的,于是甲可能寫的數(shù)字是:

52、6253、2953或7953假定第1、3次猜測中位數(shù)對的數(shù)字不是5,那么第3次猜測中位數(shù)對的數(shù)字一定是3,第1次猜測中位數(shù)對的數(shù)字只能是6而不能是9,于是只能第百位是5,十位是7,這時甲可能寫的數(shù)字只有3576綜上所述,甲可能寫的四位數(shù)是6253、2953、7953或3576(2)由上述前半部分推理,仍然能判斷出甲寫的數(shù)字各位上一定有3和5,且仍然6、9中有其一,而2、7中有其一。仍然先假設第3次猜測中數(shù)字對且位數(shù)對的是3,那么第1次猜測中數(shù)字對且位數(shù)對的只能是6,而不能是5或9。那么由于第1次猜測中5是數(shù)字對而位數(shù)不對的,則5只能放在百位,又由于第2次猜測中有一位數(shù)字對且位數(shù)對,所以只能是十

53、位上為7,這時這個四位數(shù)是3576,但這時第4次猜測將沒有數(shù)字對且位數(shù)對的數(shù),與甲的敘述不附,因此最開始的假設不成立。那么第3次猜測中數(shù)字對且位數(shù)對的數(shù)只能是5,由第3、5次猜測結(jié)果可以推知,3不在千位也不在百位,那么3只能在個位??紤]到第四次猜測中要有一位數(shù)字對且位數(shù)對,只能是百位上的7,再由第1次猜測的結(jié)果推出千位上不能是9而只能是6,于是這個四位數(shù)是6753,經(jīng)過檢驗可知,這個四位數(shù)滿足所有五個條件,因此甲寫的四位數(shù)就是6753?!眷柟獭?一只皮箱的密碼是一個三位數(shù)。小光說:“它是954?!毙∶髡f:“它是358。”小亮說:“它是214?!毙娬f:“你們每人都只猜對了位置不同的一個數(shù)字。”

54、這只皮箱的密碼是 ?!窘馕觥?每個人只猜了位置不同的一個數(shù)字,也就是說一樣的數(shù)字必然不對,“5、4”第一位肯定是9,第三位是8,第二位是1,密碼就是918?!纠?16】 一次數(shù)學考試,共六道判斷題考生認為正確的就畫“”,認為錯誤的就畫“”記分的方法是:答對一題給2分;不答的給1分;答錯的不給分已知、七人的答案及前六個人的得分記錄在表中,請在表中填出的得分并簡單說明你的思路【解析】 由于得了9分,說明他只答錯了一道題先假定答錯的是第1題,這樣就有一個標準答案,并由此可分析其他人的得分如出現(xiàn)矛盾,再假定答錯的是第2題直到判斷出答錯的題號為止有了正確的答案,就可以寫出的得分假設的第1題答錯,那么至少錯3道題,一題未答,最多得5分,與得7分矛盾所以第1題答對假設第2題答錯,可知最多得3分,矛盾所以第2題答對假設第3題答錯,則最多得3分,矛盾所以第3題答對假設第6題答錯,則最多得3分,矛盾所以第6題答對由于得9分,因此只答錯一題,因此第4題答錯,于是的第2,4兩題對,3,6兩題錯而得7分,說明的第5題是對的由,兩人的答案,可得一標準答案如下表:按此標準評分,與題中所給,得分相符合,所以的第4題確實答錯了上表的答案是正確的故可知得8分【鞏固】 學校新來了一位老師,五個學生分別聽到如下的情況:是一位姓王的中年女老師,教語文課;是一位姓丁的中年男老師

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論