




免費(fèi)預(yù)覽已結(jié)束,剩余30頁(yè)可下載查看
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第1課時(shí)歸納推理 第2章2 1 1合情推理 學(xué)習(xí)目標(biāo)1 了解歸納推理的含義 能利用歸納進(jìn)行簡(jiǎn)單的推理 2 了解歸納推理在數(shù)學(xué)發(fā)現(xiàn)中的作用 問(wèn)題導(dǎo)學(xué) 達(dá)標(biāo)檢測(cè) 題型探究 內(nèi)容索引 問(wèn)題導(dǎo)學(xué) 1 推理的定義從一個(gè)或幾個(gè)得出另一個(gè)的思維過(guò)程稱(chēng)為推理 2 推理的組成任何推理都包含和兩個(gè)部分 前提是 它告訴我們是什么 結(jié)論是 它告訴我們 是什么 知識(shí)點(diǎn)一推理 已知命題 新命題 前提 結(jié)論 推理所依據(jù)的命題 已知的知識(shí) 根據(jù)前提推得的命題 推出的知識(shí) 思考 1 銅 鐵 鋁 金 銀等金屬都能導(dǎo)電 猜想 一切金屬都能導(dǎo)電 2 統(tǒng)計(jì)學(xué)中 從總體中抽取樣本 然后用樣本估計(jì)總體 以上屬于什么推理 知識(shí)點(diǎn)二歸納推理 答案屬于歸納推理 符合歸納推理的定義特征 即由部分對(duì)象具有某些特征 推出該類(lèi)事物的全部對(duì)象都具有這些特征的推理 梳理 1 歸納推理的定義從中推演出的結(jié)論 像這樣的推理通常稱(chēng)為歸納推理 2 歸納推理的思維過(guò)程大致如圖 3 歸納推理的特點(diǎn) 歸納推理的前提是 歸納所得的結(jié)論是 該結(jié)論超越了前提所包容的范圍 由歸納推理得到的結(jié)論具有的性質(zhì) 結(jié)論是否真實(shí) 還需經(jīng)過(guò) 和 因此 它不能作為的工具 歸納推理是一種具有的推理 通過(guò)歸納推理得到的猜想 可以作為進(jìn)一步研究的起點(diǎn) 幫助人們問(wèn)題和問(wèn)題 個(gè)別事實(shí) 一般性 幾個(gè)已知的特殊現(xiàn)象 實(shí)驗(yàn) 觀察 猜測(cè)一般性結(jié)論 概括 推廣 尚屬未知 的一般現(xiàn)象 猜測(cè) 邏輯推理 實(shí)踐檢驗(yàn) 數(shù)學(xué)證明 創(chuàng)造性 發(fā)現(xiàn) 提出 思考辨析判斷正誤 1 由個(gè)別到一般的推理為歸納推理 2 歸納的前提是特殊現(xiàn)象 歸納是立足于觀察或?qū)嶒?yàn)的基礎(chǔ)上的 結(jié)論一定正確 題型探究 例1已知f x 設(shè)f1 x f x fn x fn 1 fn 1 x n 1 且n n 則f3 x 的表達(dá)式為 猜想fn x n n 的表達(dá)式為 答案 類(lèi)型一數(shù)列中的歸納推理 解析 又 fn x fn 1 fn 1 x 引申探究在本例中 若把 fn x fn 1 fn 1 x 改為 fn x f fn 1 x 其他條件不變 試猜想fn x n n 的表達(dá)式 解答 又 fn x f fn 1 x 反思與感悟在數(shù)列問(wèn)題中 常常用到歸納推理猜測(cè)數(shù)列的通項(xiàng)公式或前n項(xiàng)和 1 通過(guò)已知條件求出數(shù)列的前幾項(xiàng)或前n項(xiàng)和 2 根據(jù)數(shù)列中的前幾項(xiàng)或前n項(xiàng)和與對(duì)應(yīng)序號(hào)之間的關(guān)系求解 3 運(yùn)用歸納推理寫(xiě)出數(shù)列的通項(xiàng)公式或前n項(xiàng)和公式 解答 例2 1 觀察下列等式 據(jù)此規(guī)律 第n個(gè)等式可為 類(lèi)型二等式與不等式中的歸納推理 答案 解析 解析等式左邊的特征 第1個(gè)有2項(xiàng) 第2個(gè)有4項(xiàng) 第3個(gè)有6項(xiàng) 且正負(fù)交錯(cuò) 故第n個(gè)等式左邊有2n項(xiàng)且正負(fù)交錯(cuò) 等式右邊的特征 第1個(gè)有1項(xiàng) 第2個(gè)有2項(xiàng) 第3個(gè)有3項(xiàng) 故第n個(gè)等式右邊有n項(xiàng) 且由前幾個(gè)等式的規(guī)律不難發(fā)現(xiàn) 第n個(gè)等式右邊 2 觀察下列式子 答案 解析 故猜想第n個(gè)不等式 反思與感悟已知等式或不等式進(jìn)行歸納推理的方法 1 要特別注意所給幾個(gè)等式 或不等式 中項(xiàng)數(shù)和次數(shù)等方面的變化規(guī)律 2 要特別注意所給幾個(gè)等式 或不等式 中結(jié)構(gòu)形成的特征 3 提煉出等式 或不等式 的綜合特點(diǎn) 4 運(yùn)用歸納推理得出一般結(jié)論 為 解析不等式左邊是兩項(xiàng)的和 第一項(xiàng)是x x2 x3 右邊的數(shù)是2 3 4 利用此規(guī)律觀察所給不等式 都是寫(xiě)成xn n 1的形式 從而歸納出一般性結(jié)論 xn n 1 答案 解析 2 觀察下列等式 并從中歸納出一般結(jié)論 1 12 2 3 4 32 3 4 5 6 7 52 4 5 6 7 8 9 10 72 5 6 7 8 9 10 11 12 13 92 解等號(hào)的左端是連續(xù)自然數(shù)的和 且項(xiàng)數(shù)為2n 1 等號(hào)的右端是項(xiàng)數(shù)的平方 所以猜想結(jié)論 n n 1 3n 2 2n 1 2 n n 解答 例3如圖 第n個(gè)圖形是由正n 2邊形 擴(kuò)展 而來(lái) n 1 2 3 則第n個(gè)圖形中頂點(diǎn)的個(gè)數(shù)為 類(lèi)型三圖形中的歸納推理 答案 解析 n 2 n 3 解析由已知中的圖形我們可以得到 當(dāng)n 1時(shí) 頂點(diǎn)共有12 3 4 個(gè) 當(dāng)n 2時(shí) 頂點(diǎn)共有20 4 5 個(gè) 當(dāng)n 3時(shí) 頂點(diǎn)共有30 5 6 個(gè) 當(dāng)n 4時(shí) 頂點(diǎn)共有42 6 7 個(gè) 則第n個(gè)圖形共有頂點(diǎn) n 2 n 3 個(gè) 反思與感悟圖形中歸納推理的特點(diǎn)及思路 1 從圖形的數(shù)量規(guī)律入手 找到數(shù)值變化與數(shù)量的關(guān)系 2 從圖形結(jié)構(gòu)變化規(guī)律入手 找到圖形的結(jié)構(gòu)每發(fā)生一次變化后 與上一次比較 數(shù)值發(fā)生了怎樣的變化 跟蹤訓(xùn)練3黑白兩種顏色的正六邊形地面磚按如圖的規(guī)律拼成若干個(gè)圖案 則第n個(gè)圖案中有黑色地面磚的塊數(shù)是 解析觀察圖案知 從第一個(gè)圖案起 每個(gè)圖案中黑色地面磚的個(gè)數(shù)組成首項(xiàng)為6 公差為5的等差數(shù)列 從而第n個(gè)圖案中黑色地面磚的個(gè)數(shù)為6 n 1 5 5n 1 答案 5n 1 解析 達(dá)標(biāo)檢測(cè) 1 觀察下列各式 a b 1 a2 b2 3 a3 b3 4 a4 b4 7 a5 b5 11 則a10 b10 答案 1 2 3 4 5 123 解析 解析利用歸納法 a b 1 a2 b2 3 a3 b3 3 1 4 a4 b4 4 3 7 a5 b5 7 4 11 a6 b6 11 7 18 a7 b7 18 11 29 a8 b8 29 18 47 a9 b9 47 29 76 a10 b10 76 47 123 規(guī)律為從第三組開(kāi)始 其結(jié)果為前兩組結(jié)果的和 答案 2 按照?qǐng)D1 圖2 圖3的規(guī)律 第10個(gè)圖中圓點(diǎn)的個(gè)數(shù)為 1 2 3 4 5 解析圖1中的點(diǎn)數(shù)為4 1 4 圖2中的點(diǎn)數(shù)為8 2 4 圖3中的點(diǎn)數(shù)為12 3 4 所以圖10中的點(diǎn)數(shù)為10 4 40 40 解析 1 2 3 4 5 答案 解析 答案 解析 4 觀察 x2 2x x4 4x3 cosx sinx 由歸納推理可得 若定義在r上的函數(shù)f x 滿(mǎn)足f x f x 記g x 為f x 的導(dǎo)函數(shù) 則g x 1 2 3 4 5 g x 解析由所給函數(shù)及其導(dǎo)數(shù)知 偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù) 因此當(dāng)f x 是偶函數(shù)時(shí) 其導(dǎo)函數(shù)應(yīng)為奇函數(shù) 故g x g x 5 將全體正整數(shù)排成一個(gè)三角形數(shù)陣 按照以上排列的規(guī)律 求第n行 n 3 從左向右數(shù)第3個(gè)數(shù) 1 2 3 4 5 解答 1 歸納推理的一般步驟 1 通過(guò)觀察某類(lèi)事物的個(gè)別情況 發(fā)現(xiàn)某些相同性質(zhì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 家委會(huì)工作管理制度
- 庫(kù)房目視化管理制度
- 強(qiáng)化地板廠管理制度
- 影視器材室管理制度
- 微黨校黨員管理制度
- 心理與課堂管理制度
- 快手安全與管理制度
- 快餐廳考勤管理制度
- 總經(jīng)理授權(quán)管理制度
- 感染科電梯管理制度
- 江蘇省南師附中2024屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析
- 教師禮儀與溝通技巧(山東聯(lián)盟)智慧樹(shù)知到期末考試答案章節(jié)答案2024年濰坊學(xué)院
- 產(chǎn)業(yè)園企業(yè)服務(wù)規(guī)范及管理辦法模板
- 莎士比亞戲劇賞析智慧樹(shù)知到期末考試答案章節(jié)答案2024年北京師范大學(xué)
- (正式版)SHT 3046-2024 石油化工立式圓筒形鋼制焊接儲(chǔ)罐設(shè)計(jì)規(guī)范
- 2023年山東濟(jì)南市初中學(xué)業(yè)水平考試地理試卷真題(答案詳解)
- 國(guó)開(kāi)專(zhuān)科《建筑制圖基礎(chǔ)》形考作業(yè)1-4試題及答案
- GA/T 2015-2023芬太尼類(lèi)藥物專(zhuān)用智能柜通用技術(shù)規(guī)范
- 志愿服務(wù)證明(多模板)
- 《銷(xiāo)售員的角色定位》課件
- 阿森斯失眠評(píng)定量表2
評(píng)論
0/150
提交評(píng)論