




已閱讀5頁,還剩82頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
新人教版八年級(jí)下冊數(shù)學(xué)教學(xué)設(shè)計(jì)2018-12-22 新人教版八年級(jí)下冊數(shù)學(xué)教案目 錄1第十六章 二次根式16.1 二次根式16.2 二次根式的乘除16.3 二次根式的加減數(shù)學(xué)活動(dòng)小結(jié)復(fù)習(xí)題16第十七章勾股定理17.1 勾股定理17.2 勾股定理的逆定理數(shù)學(xué)活動(dòng)小結(jié)復(fù)習(xí)題17第十八章平行四邊形18.1 平行四邊形18.2 特殊的平行四邊形數(shù)學(xué)活動(dòng)小結(jié)復(fù)習(xí)題18第十九章一次函數(shù)19.1 函數(shù)19.2 一次函數(shù)14.3 課題學(xué)習(xí) 選擇方案數(shù)學(xué)活動(dòng)小結(jié)復(fù)習(xí)題19第二十章數(shù)據(jù)的分析20.1 數(shù)據(jù)的集中趨勢20.2 數(shù)據(jù)的波動(dòng)程度20.3 課題學(xué)習(xí) 體質(zhì)健康測試中的數(shù)據(jù)分析數(shù)學(xué)活動(dòng)小結(jié)復(fù)習(xí)題20八年級(jí)數(shù)學(xué)下學(xué)期教學(xué)工作計(jì)劃 一、指導(dǎo)思想 在教學(xué)中努力推進(jìn)九年義務(wù)教育,落實(shí)新課改,體現(xiàn)新理念,培養(yǎng)創(chuàng)新精神通過數(shù)學(xué)課的教學(xué),使學(xué)生切實(shí)學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所必需的數(shù)學(xué)基本知識(shí)和基本技能;努力培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力,以及分析問題和解決問題的能力。 二、學(xué)情分析 八年級(jí)是初中學(xué)習(xí)過程中的關(guān)鍵時(shí)期,學(xué)生基礎(chǔ)的好壞,直接影響到將來是否能升學(xué)。我班優(yōu)生稍少,學(xué)生非?;钴S,有少數(shù)學(xué)生不求上進(jìn),思維不緊跟老師。有的學(xué)生思想單純愛玩,缺乏自主學(xué)習(xí)的習(xí)慣,有部分同學(xué)基礎(chǔ)較差,厭學(xué)無目標(biāo)。要在本期獲得理想成績,老師和學(xué)生都要付出努力,查漏補(bǔ)缺,充分發(fā)揮學(xué)生是學(xué)習(xí)的主體,教師是教的主體作用,注重方法,培養(yǎng)能力。 三、教材分析 本學(xué)期教學(xué)內(nèi)容共計(jì)五章,知識(shí)的前后聯(lián)系,教材的教學(xué)目標(biāo),重、難點(diǎn)分析如下:義務(wù)教育教科書數(shù)學(xué)八年級(jí)下冊包括二次根式,勾股定理,平行四邊形,一次函數(shù),數(shù)據(jù)的分析等五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2013年版)(以下簡稱課程標(biāo)準(zhǔn))中“數(shù)與代數(shù)”“圖形與幾何”“統(tǒng)計(jì)與概率”“綜合與實(shí)踐”全部四個(gè)領(lǐng)域。其中對(duì)于“綜合與實(shí)踐”領(lǐng)域的內(nèi)容,本冊書在第十九章、第二十章分別安排了一個(gè)課題學(xué)習(xí),并在每一章的最后安排了兩個(gè)數(shù)學(xué)活動(dòng),通過這些課題學(xué)習(xí)和數(shù)學(xué)活動(dòng)落實(shí)“綜合與實(shí)踐”的要求。第16章“二次根式”主要討論如何對(duì)數(shù)和字母開平方而得到的特殊式子二次根式的加、減、乘、除運(yùn)算。通過本章學(xué)習(xí),學(xué)生將建立起比較完善的代數(shù)式及其運(yùn)算的知識(shí)結(jié)構(gòu),并為勾股定理、一元二次方程、二次函數(shù)等內(nèi)容的學(xué)習(xí)做好準(zhǔn)備。第17章“勾股定理”主要研究勾股定理和勾股定理的逆定理,包括它們的發(fā)現(xiàn)、證明和應(yīng)用。第18章“平行四邊形”主要研究一般平行四邊形的概念、性質(zhì)和判定,還研究了矩形、菱形和正方形等幾種特殊的平行四邊形。第19章是“一次函數(shù)”,其主要內(nèi)容包括:常量與變量的意義,函數(shù)的概念,函數(shù)的三種表示法,一次函數(shù)的概念、圖象、性質(zhì)和應(yīng)用舉例,一次函數(shù)與二元一次方程等內(nèi)容的關(guān)系,以及以建立一次函數(shù)模型來選擇最優(yōu)方案為素材的課題學(xué)習(xí)。第20章“數(shù)據(jù)的分析”主要研究平均數(shù)(主要是加權(quán)平均數(shù))、中位數(shù)、眾數(shù)以及方差等統(tǒng)計(jì)量的統(tǒng)計(jì)意義,學(xué)習(xí)如何利用這些統(tǒng)計(jì)量分析數(shù)據(jù)的集中趨勢和離散情況,并通過研究如何用樣本的平均數(shù)和方差估計(jì)總體的平均數(shù)和方差,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想。本學(xué)期全書共需約62課時(shí),具體分配如下:第十六章二次根式約9課時(shí) 第十七章勾股定理約9課時(shí)第十八章平行四邊形約15課時(shí)第十九章一次函數(shù)約17課時(shí)第二十章數(shù)據(jù)的分析約12課時(shí) 四、提高學(xué)科教育質(zhì)量的主要措施: 1、認(rèn)真做好教學(xué)六認(rèn)真工作。把教學(xué)六認(rèn)真作為提高成績的主要方法,認(rèn)真研讀新課程標(biāo)準(zhǔn),鉆研新教材,根據(jù)新課程標(biāo)準(zhǔn),擴(kuò)充教材內(nèi)容,認(rèn)真上課,批改作業(yè),認(rèn)真輔導(dǎo),認(rèn)真制作測試試卷,也讓學(xué)生學(xué)會(huì)認(rèn)真學(xué)習(xí)。 2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家,數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。 3、引導(dǎo)學(xué)生積極參與知識(shí)的構(gòu)建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學(xué)習(xí)課堂,讓學(xué)生體會(huì)學(xué)習(xí)的快樂,享受學(xué)習(xí)。引導(dǎo)學(xué)生寫學(xué)后總結(jié),寫復(fù)習(xí)提綱,使知識(shí)來源于學(xué)生的構(gòu)造。 4、引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過現(xiàn)象看本質(zhì),提高學(xué)生舉一反三的能力,這是提高學(xué)生素質(zhì)的根本途徑之一,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思如泉涌的狀態(tài)。 5、運(yùn)用新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。 6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的非智力因素,彌補(bǔ)智力上的不足。 7、開展分層教學(xué),布置作業(yè)設(shè)置A、B、C三類分層布置分別適合于差、中、好三類學(xué)生,課堂上的提問照顧好好、中、差三類學(xué)生,使他們都等到發(fā)展。 8、進(jìn)行個(gè)別輔導(dǎo),優(yōu)生提升能力,扎實(shí)打牢基礎(chǔ)知識(shí),對(duì)差生,一些關(guān)鍵知識(shí),輔導(dǎo)差生過關(guān),為差生以后的發(fā)展鋪平道路。 9、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣。這些習(xí)慣包括認(rèn)真做作業(yè)的習(xí)慣包括作業(yè)前清理好桌面,作業(yè)后認(rèn)真檢查;預(yù)習(xí)的習(xí)慣;認(rèn)真看批改后的作業(yè)并及時(shí)更正的習(xí)慣;認(rèn)真做好課前準(zhǔn)備的習(xí)慣;在書上作精要筆記的習(xí)慣;妥善保管書籍資料和學(xué)習(xí)用品的習(xí)慣;認(rèn)真閱讀數(shù)學(xué)教材的習(xí)慣。161.1 二次根式教學(xué)內(nèi)容 二次根式的概念及其運(yùn)用教學(xué)目標(biāo) 理解二次根式的概念,并利用(a0)的意義解答具體題目 提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實(shí)際問題教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):形如(a0)的式子叫做二次根式的概念; 2難點(diǎn)與關(guān)鍵:利用“(a0)”解決具體問題教學(xué)過程一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請同學(xué)們獨(dú)立完成下列三個(gè)課本P2的三個(gè)思考題:二、探索新知很明顯、,都是一些正數(shù)的算術(shù)平方根像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式因此,一般地,我們把形如(a0)的式子叫做二次根式,“”稱為二次根號(hào) (學(xué)生活動(dòng))議一議: 1-1有算術(shù)平方根嗎? 20的算術(shù)平方根是多少? 3當(dāng)a0)、-、(x0,y0) 分析:二次根式應(yīng)滿足兩個(gè)條件:第一,有二次根號(hào)“”;第二,被開方數(shù)是正數(shù)或0 解:二次根式有:、(x0)、-、(x0,y0);不是二次根式的有:、 例2當(dāng)x是多少時(shí),在實(shí)數(shù)范圍內(nèi)有意義? 分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-10,才能有意義 解:由3x-10,得:x 當(dāng)x時(shí),在實(shí)數(shù)范圍內(nèi)有意義三、鞏固練習(xí) 教材P5練習(xí)1、2、3四、歸納小結(jié)(學(xué)生活動(dòng),老師點(diǎn)評(píng)) 本節(jié)課要掌握: 1形如(a0)的式子叫做二次根式,“”稱為二次根號(hào) 2要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù) 五、布置作業(yè) 1教材P5 1,2,3,4 2選用課時(shí)作業(yè)設(shè)計(jì)16.1.2 二次根式(2)教學(xué)內(nèi)容 1(a0)是一個(gè)非負(fù)數(shù); 2()2=a(a0)教學(xué)目標(biāo) 理解(a0)是一個(gè)非負(fù)數(shù)和()2=a(a0),并利用它們進(jìn)行計(jì)算和化簡 通過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出(a0)是一個(gè)非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出()2=a(a0);最后運(yùn)用結(jié)論嚴(yán)謹(jǐn)解題 教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):(a0)是一個(gè)非負(fù)數(shù);()2=a(a0)及其運(yùn)用 2難點(diǎn)、關(guān)鍵:用分類思想的方法導(dǎo)出(a0)是一個(gè)非負(fù)數(shù);用探究的方法導(dǎo)出()2=a(a0) 教學(xué)過程 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))口答 1什么叫二次根式? 2當(dāng)a0時(shí),叫什么?當(dāng)a0時(shí),有意義嗎? 老師點(diǎn)評(píng)(略) 二、探究新知 議一議:(學(xué)生分組討論,提問解答) (a0)是一個(gè)什么數(shù)呢? 老師點(diǎn)評(píng):根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出 (a0)是一個(gè)非負(fù)數(shù) 做一做:根據(jù)算術(shù)平方根的意義填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老師點(diǎn)評(píng):是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,是一個(gè)平方等于4的非負(fù)數(shù),因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以 ()2=a(a0) 例1 計(jì)算 1()2 2(3)2 3()2 4()2 分析:我們可以直接利用()2=a(a0)的結(jié)論解題解:()2 =,(3)2 =32()2=325=45,()2=,()2= 三、鞏固練習(xí) 計(jì)算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、歸納小結(jié) 本節(jié)課應(yīng)掌握: 1(a0)是一個(gè)非負(fù)數(shù); 2()2=a(a0);反之:a=()2(a0) 五、布置作業(yè) 1教材P5 5,6,7,8 2選用課時(shí)作業(yè)設(shè)計(jì) 16.1 二次根式(3)教學(xué)內(nèi)容 a(a0)教學(xué)目標(biāo) 理解=a(a0)并利用它進(jìn)行計(jì)算和化簡 通過具體數(shù)據(jù)的解答,探究=a(a0),并利用這個(gè)結(jié)論解決具體問題教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):a(a0)2難點(diǎn):探究結(jié)論 3關(guān)鍵:講清a0時(shí),a才成立 教學(xué)過程 一、復(fù)習(xí)引入 老師口述并板收上兩節(jié)課的重要內(nèi)容; 1形如(a0)的式子叫做二次根式; 2(a0)是一個(gè)非負(fù)數(shù); 3()2a(a0) 那么,我們猜想當(dāng)a0時(shí),=a是否也成立呢?下面我們就來探究這個(gè)問題 二、探究新知 (學(xué)生活動(dòng))填空: =_;=_;=_; =_;=_;=_ (老師點(diǎn)評(píng)):根據(jù)算術(shù)平方根的意義,我們可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化簡 (1) (2) (3) (4)分析:因?yàn)椋?)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可運(yùn)用=a(a0)去化簡解:(1)=3 (2)=4 (3)=5 (4)=3 三、鞏固練習(xí) 教材P7練習(xí)2 四、歸納小結(jié) 本節(jié)課應(yīng)掌握:=a(a0)及其運(yùn)用,同時(shí)理解當(dāng)a0時(shí),a的應(yīng)用拓展 五、布置作業(yè) 1教材P5習(xí)題161 3、4、6、8 2選作課時(shí)作業(yè)設(shè)計(jì) 162 二次根式的乘除教學(xué)內(nèi)容 (a0,b0),反之=(a0,b0)及其運(yùn)用 教學(xué)目標(biāo) 理解(a0,b0),=(a0,b0),并利用它們進(jìn)行計(jì)算和化簡 由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出(a0,b0)并運(yùn)用它進(jìn)行計(jì)算;利用逆向思維,得出=(a0,b0)并運(yùn)用它進(jìn)行解題和化簡 教學(xué)重難點(diǎn)關(guān)鍵 重點(diǎn):(a0,b0),=(a0,b0)及它們的運(yùn)用 難點(diǎn):發(fā)現(xiàn)規(guī)律,導(dǎo)出(a0,b0) 關(guān)鍵:要講清(a0,b、0),反過來=(a0,b0)及利用它們進(jìn)行計(jì)算和化簡教學(xué)目標(biāo) 理解=(a0,b0)和=(a0,b0)及利用它們進(jìn)行運(yùn)算 利用具體數(shù)據(jù),通過學(xué)生練習(xí)活動(dòng),發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并用逆向思維寫出逆向等式及利用它們進(jìn)行計(jì)算和化簡教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):理解=(a0,b0),=(a0,b0)及利用它們進(jìn)行計(jì)算和化簡 2難點(diǎn)關(guān)鍵:發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定教學(xué)過程一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請同學(xué)們完成下列各題: 1寫出二次根式的乘法規(guī)定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_規(guī)律:_;_;_;_ 3利用計(jì)算器計(jì)算填空: (1)=_,(2)=_,(3)=_,(4)=_ 規(guī)律:_;_;_;_。 每組推薦一名學(xué)生上臺(tái)闡述運(yùn)算結(jié)果 (老師點(diǎn)評(píng)) 二、探索新知 剛才同學(xué)們都練習(xí)都很好,上臺(tái)的同學(xué)也回答得十分準(zhǔn)確,根據(jù)大家的練習(xí)和回答,我們可以得到: 一般地,對(duì)二次根式的除法規(guī)定:=(a0,b0),反過來,=(a0,b0) 下面我們利用這個(gè)規(guī)定來計(jì)算和化簡一些題目 例1計(jì)算:(1) (2) (3) (4) 分析:上面4小題利用=(a0,b0)便可直接得出答案解:(1)=2 (2)=2(3)=2(4)=2 例2化簡: (1) (2) (3) (4) 分析:直接利用=(a0,b0)就可以達(dá)到化簡之目的解:(1)= (2)= (3)= (4)= 三、鞏固練習(xí) 教材P14 練習(xí)1 四、歸納小結(jié) 本節(jié)課要掌握=(a0,b0)和=(a0,b0)及其運(yùn)用 五、布置作業(yè) 1習(xí)題162 2、7、8、9 2選用課時(shí)作業(yè)設(shè)計(jì) 21.2 二次根式的乘除(3)教學(xué)內(nèi)容 最簡二次根式的概念及利用最簡二次根式的概念進(jìn)行二次根式的化簡運(yùn)算教學(xué)目標(biāo) 理解最簡二次根式的概念,并運(yùn)用它把不是最簡二次根式的化成最簡二次根式 通過計(jì)算或化簡的結(jié)果來提煉出最簡二次根式的概念,并根據(jù)它的特點(diǎn)來檢驗(yàn)最后結(jié)果是否滿足最簡二次根式的要求重難點(diǎn)關(guān)鍵 1重點(diǎn):最簡二次根式的運(yùn)用 2難點(diǎn)關(guān)鍵:會(huì)判斷這個(gè)二次根式是否是最簡二次根式教學(xué)過程一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請同學(xué)們完成下列各題(請三位同學(xué)上臺(tái)板書) 1計(jì)算(1),(2),(3) 老師點(diǎn)評(píng):=,=,= 2現(xiàn)在我們來看本章引言中的問題:如果兩個(gè)電視塔的高分別是h1km,h2km,那么它們的傳播半徑的比是_ 它們的比是二、探索新知 觀察上面計(jì)算題1的最后結(jié)果,可以發(fā)現(xiàn)這些式子中的二次根式有如下兩個(gè)特點(diǎn): 1被開方數(shù)不含分母; 2被開方數(shù)中不含能開得盡方的因數(shù)或因式 我們把滿足上述兩個(gè)條件的二次根式,叫做最簡二次根式 那么上題中的比是否是最簡二次根式呢?如果不是,把它們化成最簡二次根式 學(xué)生分組討論,推薦34個(gè)人到黑板上板書老師點(diǎn)評(píng):不是=. 例1(1) ; (2) ; (3) 例2如圖,在RtABC中,C=90,AC=2.5cm,BC=6cm,求AB的長 解:因?yàn)锳B2=AC2+BC2 所以AB=6.5(cm) 因此AB的長為6.5cm 三、鞏固練習(xí) 練習(xí)2、3 四、歸納小結(jié) 本節(jié)課應(yīng)掌握:最簡二次根式的概念及其運(yùn)用 五、布置作業(yè) 1習(xí)題162 3、7、10 2選用課時(shí)作業(yè)設(shè)計(jì)21.3 二次根式的加減(1) 教學(xué)內(nèi)容 二次根式的加減 教學(xué)目標(biāo) 理解和掌握二次根式加減的方法 先提出問題,分析問題,在分析問題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解再總結(jié)經(jīng)驗(yàn),用它來指導(dǎo)根式的計(jì)算和化簡 重難點(diǎn)關(guān)鍵 1重點(diǎn):二次根式化簡為最簡根式 2難點(diǎn)關(guān)鍵:會(huì)判定是否是最簡二次根式 教學(xué)過程 一、復(fù)習(xí)引入 學(xué)生活動(dòng):計(jì)算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教師點(diǎn)評(píng):上面題目的結(jié)果,實(shí)際上是我們以前所學(xué)的同類項(xiàng)合并同類項(xiàng)合并就是字母不變,系數(shù)相加減 二、探索新知 學(xué)生活動(dòng):計(jì)算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老師點(diǎn)評(píng): (1)如果我們把當(dāng)成x,不就轉(zhuǎn)化為上面的問題嗎? 2+3=(2+3)=5 (2)把當(dāng)成y; 2-3+5=(2-3+5)=4=8 (3)把當(dāng)成z; +2+ =2+2+3=(1+2+3)=6 (4)看為x,看為y 3-2+ =(3-2)+ =+ 因此,二次根式的被開方數(shù)相同是可以合并的,如2與表面上看是不相同的,但它們可以合并嗎?可以的 (板書)3+=3+2=5 3+=3+3=6 所以,二次根式加減時(shí),可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并 例1計(jì)算 (1)+ (2)+分析:第一步,將不是最簡二次根式的項(xiàng)化為最簡二次根式;第二步,將相同的最簡二次根式進(jìn)行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2計(jì)算 (1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+ 三、鞏固練習(xí) 教材P19 練習(xí)1、2 四、歸納小結(jié) 本節(jié)課應(yīng)掌握:(1)不是最簡二次根式的,應(yīng)化成最簡二次根式;(2)相同的最簡二次根式進(jìn)行合并 五、布置作業(yè) 1習(xí)題163 1、2、3、5 2選作課時(shí)作業(yè)設(shè)計(jì) 21.3 二次根式的加減(2) 教學(xué)內(nèi)容 利用二次根式化簡的數(shù)學(xué)思想解應(yīng)用題 教學(xué)目標(biāo) 運(yùn)用二次根式、化簡解應(yīng)用題 通過復(fù)習(xí),將二次根式化成被開方數(shù)相同的最簡二次根式,進(jìn)行合并后解應(yīng)用題 重難點(diǎn)關(guān)鍵 講清如何解答應(yīng)用題既是本節(jié)課的重點(diǎn),又是本節(jié)課的難點(diǎn)、關(guān)鍵點(diǎn) 教學(xué)過程 一、復(fù)習(xí)引入 上節(jié)課,我們已經(jīng)講了二次根式如何加減的問題,我們把它歸為兩個(gè)步驟:第一步,先將二次根式化成最簡二次根式;第二步,再將被開方數(shù)相同的二次根式進(jìn)行合并,下面我們講三道例題以做鞏固二、探索新知例1如圖所示的RtABC中,B=90,點(diǎn)P從點(diǎn)B開始沿BA邊以1厘米/秒的速度向點(diǎn)A移動(dòng);同時(shí),點(diǎn)Q也從點(diǎn)B開始沿BC邊以2厘米/秒的速度向點(diǎn)C移動(dòng)問:幾秒后PBQ的面積為35平方厘米?(結(jié)果用最簡二次根式表示) 分析:設(shè)x秒后PBQ的面積為35平方厘米,那么PB=x,BQ=2x,根據(jù)三角形面積公式就可以求出x的值 解:設(shè)x 后PBQ的面積為35平方厘米 則有PB=x,BQ=2x 依題意,得:x2x=35 x2=35 x= 所以秒后PBQ的面積為35平方厘米 答:秒后PBQ的面積為35平方厘米 例2要焊接如圖所示的鋼架,大約需要多少米鋼材(精確到0.1m)?分析:此框架是由AB、BC、BD、AC組成,所以要求鋼架的鋼材,只需知道這四段的長度 解:由勾股定理,得 AB=2 BC= 所需鋼材長度為 AB+BC+AC+BD =2+5+2 =3+7 32.24+713.7(m) 答:要焊接一個(gè)如圖所示的鋼架,大約需要13.7m的鋼材 三、鞏固練習(xí) 教材練習(xí)3 四、歸納小結(jié) 本節(jié)課應(yīng)掌握運(yùn)用最簡二次根式的合并原理解決實(shí)際問題 五、布置作業(yè) 1習(xí)題163 7 2選用課時(shí)作業(yè)設(shè)計(jì) 21.3 二次根式的加減(3) 教學(xué)內(nèi)容 含有二次根式的單項(xiàng)式與單項(xiàng)式相乘、相除;多項(xiàng)式與單項(xiàng)式相乘、相除;多項(xiàng)式與多項(xiàng)式相乘、相除;乘法公式的應(yīng)用 教學(xué)目標(biāo) 含有二次根式的式子進(jìn)行乘除運(yùn)算和含有二次根式的多項(xiàng)式乘法公式的應(yīng)用 復(fù)習(xí)整式運(yùn)算知識(shí)并將該知識(shí)運(yùn)用于含有二次根式的式子的乘除、乘方等運(yùn)算 重難點(diǎn)關(guān)鍵 重點(diǎn):二次根式的乘除、乘方等運(yùn)算規(guī)律; 難點(diǎn)關(guān)鍵:由整式運(yùn)算知識(shí)遷移到含二次根式的運(yùn)算 教學(xué)過程 一、復(fù)習(xí)引入 學(xué)生活動(dòng):請同學(xué)們完成下列各題: 1計(jì)算 (1)(2x+y)zx (2)(2x2y+3xy2)xy 2計(jì)算 (1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2 老師點(diǎn)評(píng):這些內(nèi)容是對(duì)八年級(jí)上冊整式運(yùn)算的再現(xiàn)它主要有(1)單項(xiàng)式單項(xiàng)式;(2)單項(xiàng)式多項(xiàng)式;(3)多項(xiàng)式單項(xiàng)式;(4)完全平方公式;(5)平方差公式的運(yùn)用 二、探索新知 如果把上面的x、y、z改寫成二次根式呢?以上的運(yùn)算規(guī)律是否仍成立呢?仍成立 整式運(yùn)算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運(yùn)算規(guī)律也適用于二次根式 例1計(jì)算: (1)(+) (2)(4-3)2 分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運(yùn)算規(guī)律,所以直接可用整式的運(yùn)算規(guī)律 解:(1)(+)=+ =+=3+2 解:(4-3)2=42-32 =2- 例2計(jì)算 (1)(+6)(3-) (2)(+)(-) 分析:剛才已經(jīng)分析,二次根式的多項(xiàng)式乘以多項(xiàng)式運(yùn)算在乘法公式運(yùn)算中仍然成立 解:(1)(+6)(3-) =3-()2+18-6 =13-3 (2)(+)(-)=()2-()2 =10-7=3 三、鞏固練習(xí) 課本練習(xí)1、2 四、歸納小結(jié) 本節(jié)課應(yīng)掌握二次根式的乘、除、乘方等運(yùn)算 五、布置作業(yè) 1習(xí)題163 1、8、9 2選用課時(shí)作業(yè)設(shè)計(jì) 171 勾股定理(一)一、教學(xué)目的1了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理。2培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識(shí)和能力。3介紹我國古代在勾股定理研究方面所取得的成就,激發(fā)學(xué)生的愛國熱情,促其勤奮學(xué)習(xí)。二、重點(diǎn)、難點(diǎn) 1重點(diǎn):勾股定理的內(nèi)容及證明。 2難點(diǎn):勾股定理的證明。三、例題的意圖分析例1(補(bǔ)充)通過對(duì)定理的證明,讓學(xué)生確信定理的正確性;通過拼圖,發(fā)散學(xué)生的思維,鍛煉學(xué)生的動(dòng)手實(shí)踐能力;這個(gè)古老的精彩的證法,出自我國古代無名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國情懷。例2使學(xué)生明確,圖形經(jīng)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變。進(jìn)一步讓學(xué)生確信勾股定理的正確性。四、課堂引入目前世界上許多科學(xué)家正在試圖尋找其他星球的“人”,為此向宇宙發(fā)出了許多信號(hào),如地球上人類的語言、音樂、各種圖形等。我國數(shù)學(xué)家華羅庚曾建議,發(fā)射一種反映勾股定理的圖形,如果宇宙人是“文明人”,那么他們一定會(huì)識(shí)別這種語言的。這個(gè)事實(shí)可以說明勾股定理的重大意義。尤其是在兩千年前,是非常了不起的成就。讓學(xué)生畫一個(gè)直角邊為3cm和4cm的直角ABC,用刻度尺量出AB的長。以上這個(gè)事實(shí)是我國古代3000多年前有一個(gè)叫商高的人發(fā)現(xiàn)的,他說:“把一根直尺折成直角,兩段連結(jié)得一直角三角形,勾廣三,股修四,弦隅五。”這句話意思是說一個(gè)直角三角形較短直角邊(勾)的長是3,長的直角邊(股)的長是4,那么斜邊(弦)的長是5。再畫一個(gè)兩直角邊為5和12的直角ABC,用刻度尺量AB的長。你是否發(fā)現(xiàn)32+42與52的關(guān)系,52+122和132的關(guān)系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。對(duì)于任意的直角三角形也有這個(gè)性質(zhì)嗎?五、例習(xí)題分析例1(補(bǔ)充)已知:在ABC中,C=90,A、B、C的對(duì)邊為a、b、c。 求證:a2b2=c2。分析:讓學(xué)生準(zhǔn)備多個(gè)三角形模型,最好是有顏色的吹塑紙,讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。拼成如圖所示,其等量關(guān)系為:4S+S小正=S大正 4ab(ba)2=c2,化簡可證。發(fā)揮學(xué)生的想象能力拼出不同的圖形,進(jìn)行證明。 勾股定理的證明方法,達(dá)300余種。這個(gè)古老的精彩的證法,出自我國古代無名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國情懷。例2已知:在ABC中,C=90,A、B、C的對(duì)邊為a、b、c。求證:a2b2=c2。分析:左右兩邊的正方形邊長相等,則兩個(gè)正方形的面積相等。左邊S=4abc2右邊S=(a+b)2左邊和右邊面積相等,即4abc2=(a+b)2化簡可證。六、課堂練習(xí)1勾股定理的具體內(nèi)容是: 。2如圖,直角ABC的主要性質(zhì)是:C=90,(用幾何語言表示)兩銳角之間的關(guān)系: ;若D為斜邊中點(diǎn),則斜邊中線 ;若B=30,則B的對(duì)邊和斜邊: ;三邊之間的關(guān)系: 。3ABC的三邊a、b、c,若滿足b2= a2c2,則 =90; 若滿足b2c2a2,則B是 角; 若滿足b2c2a2,則B是 角。4根據(jù)如圖所示,利用面積法證明勾股定理。171 勾股定理(二)一、教學(xué)目的1會(huì)用勾股定理進(jìn)行簡單的計(jì)算。 2樹立數(shù)形結(jié)合的思想、分類討論思想。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的簡單計(jì)算。 2難點(diǎn):勾股定理的靈活運(yùn)用。三、例題的意圖分析例1(補(bǔ)充)使學(xué)生熟悉定理的使用,剛開始使用定理,讓學(xué)生畫好圖形,并標(biāo)好圖形,理清邊之間的關(guān)系。讓學(xué)生明確在直角三角形中,已知任意兩邊都可以求出第三邊。并學(xué)會(huì)利用不同的條件轉(zhuǎn)化為已知兩邊求第三邊。例2(補(bǔ)充)讓學(xué)生注意所給條件的不確定性,知道考慮問題要全面,體會(huì)分類討論思想。例3(補(bǔ)充)勾股定理的使用范圍是在直角三角形中,因此注意要?jiǎng)?chuàng)造直角三角形,作高是常用的創(chuàng)造直角三角形的輔助線做法。讓學(xué)生把前面學(xué)過的知識(shí)和新知識(shí)綜合運(yùn)用,提高綜合能力。四、課堂引入復(fù)習(xí)勾股定理的文字?jǐn)⑹觯还垂啥ɡ淼姆?hào)語言及變形。學(xué)習(xí)勾股定理重在應(yīng)用。五、例習(xí)題分析例1(補(bǔ)充)在RtABC,C=90已知a=b=5,求c。 已知a=1,c=2, 求b。 已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。 已知b=15,A=30,求a,c。分析:剛開始使用定理,讓學(xué)生畫好圖形,并標(biāo)好圖形,理清邊之間的關(guān)系。已知兩直角邊,求斜邊直接用勾股定理。已知斜邊和一直角邊,求另一直角邊,用勾股定理的便形式。已知一邊和兩邊比,求未知邊。通過前三題讓學(xué)生明確在直角三角形中,已知任意兩邊都可以求出第三邊。后兩題讓學(xué)生明確已知一邊和兩邊關(guān)系,也可以求出未知邊,學(xué)會(huì)見比設(shè)參的數(shù)學(xué)方法,體會(huì)由角轉(zhuǎn)化為邊的關(guān)系的轉(zhuǎn)化思想。例2(補(bǔ)充)已知直角三角形的兩邊長分別為5和12,求第三邊。分析:已知兩邊中較大邊12可能是直角邊,也可能是斜邊,因此應(yīng)分兩種情況分別進(jìn)形計(jì)算。讓學(xué)生知道考慮問題要全面,體會(huì)分類討論思想。例3(補(bǔ)充)已知:如圖,等邊ABC的邊長是6cm。求等邊ABC的高。 求SABC。分析:勾股定理的使用范圍是在直角三角形中,因此注意要?jiǎng)?chuàng)造直角三角形,作高是常用的創(chuàng)造直角三角形的輔助線做法。欲求高CD,可將其置身于RtADC或RtBDC中,但只有一邊已知,根據(jù)等腰三角形三線合一性質(zhì),可求AD=CD=AB=3cm,則此題可解。六、課堂練習(xí)1填空題在RtABC,C=90,a=8,b=15,則c= 。在RtABC,B=90,a=3,b=4,則c= 。在RtABC,C=90,c=10,a:b=3:4,則a= ,b= 。一個(gè)直角三角形的三邊為三個(gè)連續(xù)偶數(shù),則它的三邊長分別為 。已知直角三角形的兩邊長分別為3cm和5cm,則第三邊長為 。已知等邊三角形的邊長為2cm,則它的高為 ,面積為 。2已知:如圖,在ABC中,C=60,AB=,AC=4,AD是BC邊上的高,求BC的長。 3已知等腰三角形腰長是10,底邊長是16,求這個(gè)等腰三角形的面積。171 勾股定理(三)一、教學(xué)目的1會(huì)用勾股定理解決簡單的實(shí)際問題。2樹立數(shù)形結(jié)合的思想。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的應(yīng)用。2難點(diǎn):實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化。三、例題的意圖分析例1(教材探究1)明確如何將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,注意條件的轉(zhuǎn)化;學(xué)會(huì)如何利用數(shù)學(xué)知識(shí)、思想、方法解決實(shí)際問題。例2(教材探究2)使學(xué)生進(jìn)一步熟練使用勾股定理,探究直角三角形三邊的關(guān)系:保證一邊不變,其它兩邊的變化。四、課堂引入勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。五、例習(xí)題分析例1(教材探究1)分析:在實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程中,注意勾股定理的使用條件,即門框?yàn)殚L方形,四個(gè)角都是直角。讓學(xué)生深入探討圖中有幾個(gè)直角三角形?圖中標(biāo)字母的線段哪條最長?指出薄木板在數(shù)學(xué)問題中忽略厚度,只記長度,探討以何種方式通過?轉(zhuǎn)化為勾股定理的計(jì)算,采用多種方法。注意給學(xué)生小結(jié)深化數(shù)學(xué)建模思想,激發(fā)數(shù)學(xué)興趣。例2(教材探究2)分析:在AOB中,已知AB=3,AO=2.5,利用勾股定理計(jì)算OB。 在COD中,已知CD=3,CO=2,利用勾股定理計(jì)算OD。則BD=ODOB,通過計(jì)算可知BDAC。進(jìn)一步讓學(xué)生探究AC和BD的關(guān)系,給AC不同的值,計(jì)算BD。六、課堂練習(xí)1小明和爸爸媽媽十一登香山,他們沿著45度的坡路走了500米,看到了一棵紅葉樹,這棵紅葉樹的離地面的高度是 米。2如圖,山坡上兩株樹木之間的坡面距離是4米,則這兩株樹之間的垂直距離是 米,水平距離是 米。2題圖 3題圖 4題圖3如圖,一根12米高的電線桿兩側(cè)各用15米的鐵絲固定,兩個(gè)固定點(diǎn)之間的距離是 。4如圖,原計(jì)劃從A地經(jīng)C地到B地修建一條高速公路,后因技術(shù)攻關(guān),可以打隧道由A地到B地直接修建,已知高速公路一公里造價(jià)為300萬元,隧道總長為2公里,隧道造價(jià)為500萬元,AC=80公里,BC=60公里,則改建后可省工程費(fèi)用是多少?171 勾股定理(四)一、教學(xué)目的1會(huì)用勾股定理解決較綜合的問題。2樹立數(shù)形結(jié)合的思想。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的綜合應(yīng)用。2難點(diǎn):勾股定理的綜合應(yīng)用。三、例題的意圖分析例1(補(bǔ)充)“雙垂圖”是中考重要的考點(diǎn),熟練掌握“雙垂圖”的圖形結(jié)構(gòu)和圖形性質(zhì),通過討論、計(jì)算等使學(xué)生能夠靈活應(yīng)用。目前“雙垂圖”需要掌握的知識(shí)點(diǎn)有:3個(gè)直角三角形,三個(gè)勾股定理及推導(dǎo)式BC2-BD2=AC2-AD2,兩對(duì)相等銳角,四對(duì)互余角,及30或45特殊角的特殊性質(zhì)等。例2(補(bǔ)充)讓學(xué)生注意所求結(jié)論的開放性,根據(jù)已知條件,作適當(dāng)輔助線求出三角形中的邊和角。讓學(xué)生掌握解一般三角形的問題常常通過作高轉(zhuǎn)化為直角三角形的問題。使學(xué)生清楚作輔助線不能破壞已知角。例3(補(bǔ)充)讓學(xué)生掌握不規(guī)則圖形的面積,可轉(zhuǎn)化為特殊圖形求解,本題通過將圖形轉(zhuǎn)化為直角三角形的方法,把四邊形面積轉(zhuǎn)化為三角形面積之差。在轉(zhuǎn)化的過程中注意條件的合理運(yùn)用。讓學(xué)生把前面學(xué)過的知識(shí)和新知識(shí)綜合運(yùn)用,提高解題的綜合能力。例4(教材P76頁探究3)讓學(xué)生利用尺規(guī)作圖和勾股定理畫出數(shù)軸上的無理數(shù)點(diǎn),進(jìn)一步體會(huì)數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng)的理論。四、課堂引入 復(fù)習(xí)勾股定理的內(nèi)容。本節(jié)課探究勾股定理的綜合應(yīng)用。五、例習(xí)題分析例1(補(bǔ)充)1已知:在RtABC中,C=90,CDBC于D,A=60,CD=,求線段AB的長。分析:本題是“雙垂圖”的計(jì)算題,“雙垂圖”是中考重要的考點(diǎn),所以要求學(xué)生對(duì)圖形及性質(zhì)掌握非常熟練,能夠靈活應(yīng)用。目前“雙垂圖”需要掌握的知識(shí)點(diǎn)有:3個(gè)直角三角形,三個(gè)勾股定理及推導(dǎo)式BC2-BD2=AC2-AD2,兩對(duì)相等銳角,四對(duì)互余角,及30或45特殊角的特殊性質(zhì)等。 要求學(xué)生能夠自己畫圖,并正確標(biāo)圖。引導(dǎo)學(xué)生分析:欲求AB,可由AB=BD+CD,分別在兩個(gè)三角形中利用勾股定理和特殊角,求出BD=3和AD=1?;蛴驛B,可由,分別在兩個(gè)三角形中利用勾股定理和特殊角,求出AC=2和BC=6。例2(補(bǔ)充)已知:如圖,ABC中,AC=4,B=45,A=60,根據(jù)題設(shè)可知什么?分析:由于本題中的ABC不是直角三角形,所以根據(jù)題設(shè)只能直接求得ACB=75。在學(xué)生充分思考和討論后,發(fā)現(xiàn)添置AB邊上的高這條輔助線,就可以求得AD,CD,BD,AB,BC及SABC。讓學(xué)生充分討論還可以作其它輔助線嗎?為什么?小結(jié):可見解一般三角形的問題常常通過作高轉(zhuǎn)化為直角三角形的問題。并指出如何作輔助線?解略。例3(補(bǔ)充)已知:如圖,B=D=90,A=60,AB=4,CD=2。求:四邊形ABCD的面積。分析:如何構(gòu)造直角三角形是解本題的關(guān)鍵,可以連結(jié)AC,或延長AB、DC交于F,或延長AD、BC交于E,根據(jù)本題給定的角應(yīng)選后兩種,進(jìn)一步根據(jù)本題給定的邊選第三種較為簡單。教學(xué)中要逐層展示給學(xué)生,讓學(xué)生深入體會(huì)。解:延長AD、BC交于E。A=60,B=90,E=30。AE=2AB=8,CE=2CD=4,BE2=AE2-AB2=82-42=48,BE=。DE2= CE2-CD2=42-22=12,DE=。S四邊形ABCD=SABE-SCDE=ABBE-CDDE=小結(jié):不規(guī)則圖形的面積,可轉(zhuǎn)化為特殊圖形求解,本題通過將圖形轉(zhuǎn)化為直角三角形的方法,把四邊形面積轉(zhuǎn)化為三角形面積之差。例4(教材探究3)分析:利用尺規(guī)作圖和勾股定理畫出數(shù)軸上的無理數(shù)點(diǎn),進(jìn)一步體會(huì)數(shù)軸上的點(diǎn)與實(shí)數(shù)一一對(duì)應(yīng)的理論。變式訓(xùn)練:在數(shù)軸上畫出表示的點(diǎn)。六、課堂練習(xí)1ABC中,AB=AC=25cm,高AD=20cm,則BC= ,SABC= 。2ABC中,若A=2B=3C,AC=cm,則A= 度,B= 度,C= 度,BC= ,SABC= 。3ABC中,C=90,AB=4,BC=,CDAB于D,則AC= ,CD= ,BD= ,AD= ,SABC= 。4已知:如圖,ABC中,AB=26,BC=25,AC=17,求SABC。172 勾股定理的逆定理(一)一、教學(xué)目的1體會(huì)勾股定理的逆定理得出過程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的證明方法。3理解原命題、逆命題、逆定理的概念及關(guān)系。二、重點(diǎn)、難點(diǎn)1重點(diǎn):掌握勾股定理的逆定理及證明。 2難點(diǎn):勾股定理的逆定理的證明。三、例題的意圖分析例1(補(bǔ)充)使學(xué)生了解命題,逆命題,逆定理的概念,及它們之間的關(guān)系。例2通過讓學(xué)生動(dòng)手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,鍛煉學(xué)生的動(dòng)手操作能力,再通過探究理論證明方法,使實(shí)踐上升到理論,提高學(xué)生的理性思維。例3(補(bǔ)充)使學(xué)生明確運(yùn)用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形的一般步驟:先判斷那條邊最大。分別用代數(shù)方法計(jì)算出a2+b2和c2的值。判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形。四、課堂引入創(chuàng)設(shè)情境:怎樣判定一個(gè)三角形是等腰三角形?怎樣判定一個(gè)三角形是直角三角形?和等腰三角形的判定進(jìn)行對(duì)比,從勾股定理的逆命題進(jìn)行猜想。五、例習(xí)題分析例1(補(bǔ)充)說出下列命題的逆命題,這些命題的逆命題成立嗎?同旁內(nèi)角互補(bǔ),兩條直線平行。如果兩個(gè)實(shí)數(shù)的平方相等,那么兩個(gè)實(shí)數(shù)平方相等。線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等。直角三角形中30角所對(duì)的直角邊等于斜邊的一半。分析:每個(gè)命題都有逆命題,說逆命題時(shí)注意將題設(shè)和結(jié)論調(diào)換即可,但要分清題設(shè)和結(jié)論,并注意語言的運(yùn)用。理順?biāo)麄冎g的關(guān)系,原命題有真有假,逆命題也有真有假,可能都真,也可能一真一假,還可能都假。解略。例2證明:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形。分析:注意命題證明的格式,首先要根據(jù)題意畫出圖形,然后寫已知求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)據(jù)分析與商業(yè)智能的關(guān)系的試題及答案
- 軟件設(shè)計(jì)師考試筆試技巧試題及答案
- 小學(xué)生道德判斷能力的培養(yǎng)計(jì)劃
- 企業(yè)靈活創(chuàng)新與戰(zhàn)略風(fēng)險(xiǎn)轉(zhuǎn)變的實(shí)質(zhì)考核試題及答案
- 幼兒園創(chuàng)意手工活動(dòng)計(jì)劃
- 財(cái)務(wù)報(bào)表中隱含的信息分析計(jì)劃
- 福建省南平市劍津片區(qū)2025屆八下數(shù)學(xué)期末監(jiān)測模擬試題含解析
- 學(xué)生自我管理與反思計(jì)劃
- 2024年臺(tái)州溫嶺市箬橫鎮(zhèn)中心衛(wèi)生院招聘真題
- 2024年陜西工運(yùn)學(xué)院輔導(dǎo)員考試真題
- GB 5585.1-1985電工用銅、鋁及其合金母線第1部分:一般規(guī)定
- 等級(jí)保護(hù)定級(jí)指南(第十二期)講解課件
- 接觸網(wǎng)設(shè)備檢測課件
- 銅綠假單胞菌下呼吸道感染專家共識(shí)課件
- 故都的秋公開一等獎(jiǎng)?wù)n件
- 土石壩填筑的施工方法
- 【高中化學(xué)會(huì)考】山西省普通高中畢業(yè)會(huì)考化學(xué)試題樣題
- 2023高考地理高三一輪復(fù)習(xí)教學(xué)計(jì)劃和備考策略
- 2022年虹口區(qū)事業(yè)單位公開招聘面試考官練習(xí)試題附答案
- Java程序設(shè)計(jì)項(xiàng)目教程(第二版)教學(xué)課件匯總完整版電子教案
- 小學(xué)音樂說課萬能模板
評(píng)論
0/150
提交評(píng)論