高中數(shù)學(xué)必修二直線與圓的位置關(guān)系.doc_第1頁(yè)
高中數(shù)學(xué)必修二直線與圓的位置關(guān)系.doc_第2頁(yè)
高中數(shù)學(xué)必修二直線與圓的位置關(guān)系.doc_第3頁(yè)
高中數(shù)學(xué)必修二直線與圓的位置關(guān)系.doc_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

課題:直線與圓的位置關(guān)系一、教學(xué)內(nèi)容分析學(xué)生在初中的學(xué)習(xí)中已了解直線與圓的位置關(guān)系,并知道可以利用直線與圓的公共點(diǎn)的個(gè)數(shù),圓心與直線的距離d與半徑r的關(guān)系來(lái)判斷直線與圓的位置關(guān)系,但是,在初中學(xué)習(xí)時(shí),利用圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系的方法都是以結(jié)論性的形式呈現(xiàn),雖然是定量的展現(xiàn),但實(shí)質(zhì)還是定性研究(d與r都是直接給數(shù)據(jù)或者利用幾何證明來(lái)得出d與r的數(shù)量關(guān)系).在高一學(xué)習(xí)了解析幾何以后,要考慮的問(wèn)題是如何掌握由直線和圓的方程判斷直線與圓的位置關(guān)系的方法,也就是定量研究.解決問(wèn)題的方法主要是幾何法(d-r法)和代數(shù)法(法).其中幾何法是在初中學(xué)習(xí)的基礎(chǔ)上,結(jié)合高中所學(xué)的點(diǎn)到直線的距離公式求出圓心與直線的距離d后,比較與半徑r的關(guān)系從而作出判斷.而代數(shù)法是結(jié)合直線方程與圓的方程,通過(guò)聯(lián)立方程形成方程組,轉(zhuǎn)化為二次方程根的判別問(wèn)題從而做出判斷。兩種方法學(xué)生都可以自己討論得到,通過(guò)具體問(wèn)題學(xué)生掌握“代數(shù)法”與“幾何法”,明確代數(shù)法更具有一般性,幾何法則緊扣圓的幾何特性,充分利用圓的性質(zhì)。所以在研究直線與圓的位置關(guān)系時(shí) “幾何法”更實(shí)用一些.通過(guò)教學(xué)想讓學(xué)生體會(huì):解析幾何的核心就是坐標(biāo)法,計(jì)算是必不可少的,提高計(jì)算能力也是必要的。但解析幾何終究研究的是幾何問(wèn)題,深入研究幾何圖形的特性,再用代數(shù)方法去解決可以減少計(jì)算量從而提高解題效率。含參數(shù)的問(wèn)題、簡(jiǎn)單的弦的問(wèn)題、切線問(wèn)題等綜合問(wèn)題作為進(jìn)一步的拓展提高或綜合應(yīng)用,也可適度地引入課堂教學(xué)中,但以深化“判定直線與圓的位置關(guān)系”為目的,想要控制難度.雖然學(xué)生學(xué)習(xí)解析幾何了,但把幾何問(wèn)題代數(shù)化無(wú)論是思維習(xí)慣還是具體轉(zhuǎn)化方法,學(xué)生仍是似懂非懂,因此應(yīng)不斷強(qiáng)化,逐漸內(nèi)化為學(xué)生的習(xí)慣和基本素質(zhì).二、學(xué)生情況分析學(xué)生在初中平面幾何中已經(jīng)接觸過(guò)直線與圓的位置關(guān)系,前面已經(jīng)學(xué)習(xí)了直線方程、圓的方程、兩直線的位置關(guān)系以及點(diǎn)到直線的距離等知識(shí),具備了利用方程及圖形研究直線與圓的位置關(guān)系的基本能力。授課班級(jí)是區(qū)示范校的普通班,學(xué)生基礎(chǔ)較好,勤于思考,但不是很愿意主動(dòng)發(fā)言,所以教師要設(shè)計(jì)好問(wèn)題,引導(dǎo)學(xué)生一步一步得出結(jié)論.三、教學(xué)目標(biāo)1.知識(shí)與技能(1)理解直線與圓的位置關(guān)系的種類;(2)掌握用圓心到直線的距離來(lái)判斷直線與圓的位置關(guān)系;(3)會(huì)用直線與圓方程組成的方程組的解的個(gè)數(shù)來(lái)判斷直線與圓的位置關(guān)系.2. 過(guò)程與方法通過(guò)直線與圓的位置關(guān)系的分類及其判定方法的學(xué)習(xí),體會(huì)數(shù)形結(jié)合的思想方法,提高用方程思想解決平面幾何問(wèn)題的能力:3. 情感、態(tài)度與價(jià)值觀通過(guò)觀察圖形,理解并掌握直線與圓的位置關(guān)系,體會(huì)數(shù)形結(jié)合的思想.通過(guò)直線與圓位置關(guān)系的變化,滲透運(yùn)動(dòng)觀點(diǎn).四、重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):用解析法判斷直線與圓的位置關(guān)系.通過(guò)直線與圓的位置關(guān)系的代數(shù)化處理,學(xué)生進(jìn)一步認(rèn)識(shí)到坐標(biāo)系是聯(lián)系數(shù)與形的橋梁,從而更深刻地體會(huì)坐標(biāo)法思想.教學(xué)難點(diǎn):判斷直線與圓的位置關(guān)系的方法有圖示法、解析法、列方程組法 3種,其中直線與圓方程聯(lián)立解方程組對(duì)學(xué)生的計(jì)算能力要求較高,而這正是學(xué)生需經(jīng)長(zhǎng)期培養(yǎng)方能提高的,這是學(xué)生的學(xué)習(xí)障礙,也是教學(xué)難點(diǎn).五、教學(xué)過(guò)程設(shè)計(jì):這一段時(shí)間我們都在學(xué)習(xí)解析幾何的知識(shí)。解析幾何就是用代數(shù)的方法研究幾何問(wèn)題,因此解析幾何不僅研究直線與曲線,同時(shí)也研究它們的位置關(guān)系,前面學(xué)習(xí)了直線間的位置關(guān)系,今天我們來(lái)研究直線與圓的位置關(guān)系。(一)、復(fù)習(xí)導(dǎo)入(1)直線方程Ax+By+C=0(A,B不同時(shí)為零).(2)圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2,圓心為(a,b),半徑為r.(3)圓的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F0),圓心為(-,-),半徑為.(4)點(diǎn)P(x0,y0)到直線Ax+By+C=0(A2+B2 0)的距離是.設(shè)計(jì)意圖:為本節(jié)課的學(xué)習(xí)做好知識(shí)準(zhǔn)備。(二)、提出問(wèn)題,實(shí)例研究初中學(xué)過(guò)的平面幾何中,直線與圓的位置關(guān)系有幾類?在初中,我們?cè)鯓优袛嘀本€與圓的位置關(guān)系呢?設(shè)計(jì)意圖:為后面的問(wèn)題做理論上的準(zhǔn)備。你想過(guò)下面的問(wèn)題嗎:怎樣說(shuō)明公共點(diǎn)的個(gè)數(shù)?如何知道d與r的數(shù)值呢?初中你是如何回答這些問(wèn)題呢?結(jié)合我們現(xiàn)在正在學(xué)習(xí)的解析幾何知識(shí),你能想到什么方法?(建立坐標(biāo)系,借助方程來(lái)完成。)請(qǐng)大家完成下面的問(wèn)題:例1 已知直線l: x+3y-6=0和圓心為C的圓x2+y2-2x-4=0,判斷直線l與圓的位置關(guān)系.如果相交,請(qǐng)你求出交點(diǎn)坐標(biāo)。解:由直線l與圓的方程,得消去x,得y2-3y+2=0,因?yàn)?(-3)2-412=10,所以直線l與圓相交,有兩個(gè)公共點(diǎn).解得,當(dāng)時(shí),x;當(dāng)時(shí),x所以直線與圓 相交,交點(diǎn)坐標(biāo)為(,),(,)總結(jié)方法:1將直線方程與圓的方程聯(lián)立成方程組.2利用消元法,得到一個(gè)一元二次方程.3求出其判別式的值.4比較與0的大小關(guān)系,若0,則直線與圓相離;若=0,則直線與圓相切;若0,則直線與圓相交.反之也成立.變式:已知圓的方程是x2+y2=2,直線y=x+b,當(dāng)b為何值時(shí),圓與直線有兩個(gè)公共點(diǎn),只有一個(gè)公共點(diǎn)沒(méi)有公共點(diǎn).解法一:若直線l:y=x+b和圓x2+y2=2有兩個(gè)公共點(diǎn)、只有一個(gè)公共點(diǎn)、沒(méi)有公共點(diǎn),則方程組有兩個(gè)不同解、有兩個(gè)相同解、沒(méi)有實(shí)數(shù)解,消去y,得2x2+2bx+b2-2=0,所以=(2b)2-42(b2-2)=16-4b2.所以,當(dāng)=16-4b20,即-2b2時(shí),圓與直線有兩個(gè)公共點(diǎn);當(dāng)=16-4b2=0,即b=2時(shí),圓與直線只有一個(gè)公共點(diǎn);當(dāng)=16-4b20,即b2或b-2時(shí),圓與直線沒(méi)有公共點(diǎn).解法二:圓x2+y2=2的圓心C的坐標(biāo)為(0,0),半徑長(zhǎng)為2,圓心C到直線l:y=x+b的距離d=.當(dāng)dr時(shí),即,即|b|2,即b2或b-2時(shí),圓與直線沒(méi)有公共點(diǎn);當(dāng)d=r時(shí),即=,即|b|=2,即b=2時(shí),圓與直線只有一個(gè)公共點(diǎn);當(dāng)dr時(shí),即,即|b|2,即-2b2時(shí),圓與直線有兩個(gè)公共點(diǎn).總結(jié)方法:1把直線方程化為一般式,求出圓心和半徑.2利用點(diǎn)到直線的距離公式求圓心到直線的距離.3作判斷:當(dāng)dr時(shí),直線與圓相離;當(dāng)d=r時(shí),直線與圓相切;當(dāng)dr時(shí),直線與圓相交.變式:已知圓的方程是x2+y2=2,分別求出過(guò)點(diǎn)(1, ),(1,1)(0,2)圓的切線方程。小結(jié):首先要判斷點(diǎn)與圓的位置關(guān)系,然后才能去求切線方程。(三)知識(shí)應(yīng)用例3、有兩艘輪船在沿直線返回港口的途中均接到氣象臺(tái)的臺(tái)風(fēng)預(yù)報(bào):臺(tái)風(fēng)中心位于O點(diǎn),受影響的范圍是半徑長(zhǎng)為40km的圓形區(qū)域.已知港口位于臺(tái)風(fēng)中心正北70km的M處,A輪船位于臺(tái)風(fēng)中心的正東70km處,B輪船位于臺(tái)風(fēng)中心的正西200km處,如果這兩艘輪船都不改變航線,那么它們是否會(huì)受到臺(tái)風(fēng)的影響?三、課堂小結(jié)本節(jié)課學(xué)習(xí)了如下內(nèi)容:1直線與圓的三種位置關(guān)系(1)代數(shù)法:從公共點(diǎn)數(shù)來(lái)判斷(2)幾何法從d與r間的數(shù)量關(guān)系來(lái)判斷2. 利用本節(jié)知識(shí)解決實(shí)際問(wèn)題本節(jié)課我們重點(diǎn)用了解析法(坐標(biāo)法)來(lái)解決直線與圓的位置關(guān)系的相關(guān)問(wèn)題,平面解析幾何研究的對(duì)象就是平面圖形(點(diǎn)、直線、圓),當(dāng)然要充分挖掘幾何圖形結(jié)構(gòu)的特征,合適的“特征量”的選取很重要,比如本節(jié)課兩種方法其實(shí)就是選取了不同的特征量“”和“交點(diǎn)”,大家可能覺(jué)得用法的計(jì)算明顯比法的簡(jiǎn)單,這就是由于圓的特殊結(jié)構(gòu)。可如果把圓換成別的曲線就沒(méi)有“”了

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論