




已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
-2005年浙江省普通高?!?+2”聯(lián)考高等數學A試卷-姓名:_準考證號:_報考學校 報考專業(yè): -密封線-2005年浙江省普通高校“2+2”聯(lián)考高等數學A試卷題 號一二三四五總 分復核得 分考試說明:1、考試為閉卷,考試時間為150分鐘;2、滿分為150分;3、答案請寫在試卷紙上,用藍色或黑色墨水的鋼筆、圓珠筆答卷,否則無效;4、密封線左邊各項要求填寫清楚完整。得分閱卷人一、填空題:(只需在橫線上直接寫出答案,不必寫出計算過程,本題共有8個小題,每一小題3分,共24分)1. 設連續(xù)函數曲線 與 在原點相切, 則 .2. .3. 已知 為自原點到點 的半圓周 , 則 .4. 微分方程 的通解為 .5. .6. 已知四階方陣 的特征值為 : , 則 .7.設 是隨機變量 的分布函數, 則隨機變量 的分布函數 .8. 隨機變量 與 的聯(lián)合分布律為: Y 1 2 3X0 1 0 則期望值 . 得分閱卷人二選擇題. (本題共有8個小題,每一小題3分,共24分,每個小題給出的選項中,只有一項符合要求)1. 級數 是 ( ).(A)發(fā)散 (B)絕對收斂 (C)條件收斂 (D)斂散性不確定2. (其中 為 在球面坐標下的表示式為 ( ). (A) (B) (C) (D) 3. 已知 則 ( ).(A)1 (B) (C) (D)4. 級數 的收斂域是( ). (A) (B) (C) (D)5. 設 為 階方陣 , 是非齊次方程組 對應的齊次方程組, 則下面結論不一定成立的是 ( ) .(A)若 有無窮多解 , 則 有非零解 .(B)若 有唯一解 , 則 沒有非零解 .(C)若 只有零解 , 則 有唯一解 .(D)若 有非零解 , 則 有無窮多解 .6. 隨機事件 與 相互獨立 , 則下面結論成立的是 ( ).(A) (B)(C) (D)7. 隨機變量 與 相互獨立, 且 分別為 的分布函數 , 則 的分布函數為 ( ). (A) (B)(C) (D)8. 隨機變量 與 相互獨立 , 已知 的方差為 2 , , 則協(xié)方差 為 ( ) .(A)8 (B)4 (C) 2 (D) 0得分閱卷人三計算題:(計算題必須寫出必要的計算過程,只寫答案的不給分,本題共9個小題,每小題7分,共63分)1. 求 .2. 已知 , 求 .3. 求不定積分 .4. 計算 , 其中 是直線 和 所圍的封閉平面區(qū)域 .5. 求冪級數 的和函數 .6. 已知:. 確定常量 的取值的范圍 , 使 能由 唯一線性表示, 并寫出該表示式 . 7. , 求矩陣 , 使 為對角陣 . 8. 隨機變量 與 相互獨立 , 服從參數為2的指數分布 , 服從 上的均勻分布 . 求 (1) 的聯(lián)合密度函數 ; (2) 概率值 .9. 盒中有 7 件同型產品 , 其中有 2件一等品 , 2 件二等品 , 3 件三等品. 從中取兩次 , 每次隨機取一件 . 定義 如下 : , .在不放回的抽取中 , 求 (1) 的聯(lián)合分布律 ;(2)期望值 .得分閱卷人四應用題: (本題共3個小題,每小題8分,共24分)1. 已知函數 在 上可導, 滿足 . 求 , 使得由曲線 與直線 和 所圍的平面圖形繞 軸旋轉一周所得旋轉體體積最小 .2. 已知方程組 的通解為 ,( 為任意常數). 給定方程組 : 求 的通解, 并求 的非零公共解 . 3. 在裝有標號為 1 , 1 , 2 , 3 的四個乒乓球的盒中隨機取球 , 取到 1 號球時可繼續(xù)在裝有四張獎劵 ( 4 張中只有 1 張有獎 ) 的盒中抽獎 ; 取到 2 號球時可繼續(xù)在裝有五張獎劵 ( 5 張中只有 2 張有獎 ) 的盒中抽獎 ; 取到 3 號球時可繼續(xù)在裝有六張獎劵 ( 6 張中只有3 張有獎 ) 的盒中抽獎 . 已知某人在一次抽獎中抽到獎 , 問他是取到 2 號球的概率是多少 ?得分閱卷人五證明題: (本題共2個小題,第一小題8分,第二小題7分,共15分)1. 設 有連續(xù)偏導數 , 且對任意 有 . 證明 : 對 有 . 2. 是 階方陣, 已知 是非齊次方程組 的 個線性無關的解 ,矩陣 的秩為 . 證明: 的任一個解均可由 線性表示 . 評分標準一. 填空題1. 2. 0 3. 4.5. . 二. 選擇題1. 2. 3. 4. 5. 三. 計算題1.解: 原式 2 3 5 = 72.解: 因 在 處連續(xù). 1 = 3 = 5 , 7 3.解: 原式 2 4 74.解: 1 5 = = . 7 5.解: 令 1 其中 , 4 解得: , 5 . 76.解: 2 4 可由線性表示. 5 6 77.解: 1 2 的特征值為: 1,1,1,9. 3的特征向量: 的特征向量: 5 78.解: , 2 3 4 6 . 79.解: Y 1 2 3 X 1 2 3 4X 1 2 3 P 6 7四. 1. 解: 由 得 3 5 6 7 為唯一的極小值點,為最小值點.2. 解: 由 2 的通解: 3 令 4 6 7 有非零公共解: . 83.解: 令 ”取到第號球” ”在有張獎劵的盒中抽中獎”
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程機械電器設備
- 合伙開公司協(xié)議書范本
- 市政工程培訓
- 護理化妝教程
- 皰性角結膜炎的臨床護理
- 長期昏迷患者護理
- 腎上腺手術護理
- 二次根式加減教學設計
- 氣道出血相關知識與處理
- 微生物實驗室工作總結模版
- 開休閑書吧創(chuàng)業(yè)計劃書
- 人體常見病智慧樹知到期末考試答案章節(jié)答案2024年
- 《石油行業(yè)安全生產標準化-陸上采油實施規(guī)范》
- 異常產程的識別和處理
- 危險化學品“兩重點一重大”簡介(劉卓)省公開課一等獎全國示范課微課金獎課件
- 完整版購銷合同范本(標準版)-2024多場合版
- 傳染病孕婦的管理與預防
- 生物教學中的跨學科教學設計和實施
- 機織產品工藝設計與計算改樣本
- 梅隴鎮(zhèn)永聯(lián)村未來規(guī)劃方案
- 天津港橫道圖-繪制
評論
0/150
提交評論