




已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ECE451 Controll Engineering Inverted pendulum09/29/2013Introduction:Inverted pendulum is a typical fast, multi-varaibles, nonlinear, unstable system, it has significant meaning. We choose the PID controller to fot the inverted pendulum. Assume the input is a step signal , the gravitational acceleration g=9.8m/s2 and linearize the nonlinear model around the operating point.1.Mathematic ModlingMmass of the car0.5 kgmmass of the pendulum0.2 kgbcoefficient of friction for cart0.1 N/m/secllength to pendulum center of mass0.3 mImass moment of inertia of the pendulum 0.006 kg.m2Fforce applied to the cartxcoordinate of cart positionpendulum angle from vertical (down)N and F are the force from horizontal and vertical direction.N=md2dt2(x+lsin)Force analysisConsider the horizontal direction cart force, we get the equation:Mx=F-bx-NConsider the horizontal direction pendulum force, we get the equation:N=mx+mlcos-ml2sinTo get rid of P and N, we get this equation:-Plsin-Nlcos=IMerge these two equations, about to P And N, to obtain a second motion equation:l+ml2+mglsin=-mlxcosu to represent the controlled object with the input force F, linearized two motion equationsApply Laplace transform to the equation aboveThe transfer function of angle and positionLet v = xput the equation above into the second equationWe get the transfer functionState space equation:Solve the algebraic equation, obtain solution as follows:Finally we get the system state space equations.2. PID Controller DesignWe now design a PID controller for the inverted pendulum system.KD(s) is the transfer function of the controller.G(s) is the transfer function of the controlled car.Considering that the input r(s) =0, the block diagram can be transformed as:The output of the system is num the numerator of the objectden the denominator of the objectnumPID the numerator of the PID controller transfer functiondenPID the denominator of the PID controller transfer functionThe object transfer function is ,in which .PID Controller Transfer Function is Now, we add the cars position as another output, we get in which G1 is the transfer function of the pendulum, G2 is the transfer function of the car.The output of the cars position is in which, num1,den1,num2,den2 are separately mean the controlled object 1 and object 2 and PID controllers numerators and denominators.From , we could get thatIn which, .We can easily simplified the equation as3. Matlab SimulationIn design, the carts position will be ignored. Under these conditions, the design criteria are: 1) settling time is less than 5 seconds 2) pendulum should not move more than 0.05 radians away from the verticalWhen kd=1,k=1,ki=1:numc1=4.5455 0 0 0, denc1=1 4.7273 -26.6364 0.0909 0 0, num2= -1.8182 0 44.5455 0, denc2=1 4.7273 -26.6364 0.0909 0 Then we tried many times to adjust the parameter to satisfy the requirements: Ts =5 s and overshoot M0.05.We find the optimal parameters of kd,k,ki which is the second situation.2. When kd=20,k=300,ki=1:Numc1= 4.5455 0 0 0, denc1=0.001 0.09111.3325 0.0001 0 0, numc2= -1.8182 0 44.5455 0, denc2=0.001 0.09111.3325 0.0001 0 0The results: Matlab codesM=0.5;m=0.2;b=0.1;I=0.006;g=9.8;l=0.3;q=(M+m)*(I+m*l2)/q-(m*l)2;num1=m*l/q 0 0;den1=1 b*(I+m*l2)/q-(M+m)*m*g*l/q-b*m*g*l/q 0;num2=-(I+m*l2)/q 0 m*g*l/q;den2=den1;kd=1;k=1;ki=1;numPID=kd k ki;denPID=1 0;numci=conv (num1 denPID);denc1=polyadd(conv(denPID,den1),conv(numPID,num1);t=0:0.1:20;figure(1)impulse(numc1,denc1,t)title(Angle)figure(2)impulse(numc2,denc2,t)title(Position)M=0.5;m=0.2;b=0.1;I=0.006;g=9.8;l=0.3;q=(M+m)*(I+m*l2)/q-(m*l)2;num1=m*l/q 0 0;den1=1 b*(I+m*l2)/q-(M+m)*m*g*l/q-b*m*g*l/q 0;num2=-(I+m*l2)/q 0 m*g*l/q;den2=den1;kd=20;k=300;ki=1;numPID=kd k ki;denPID=1 0;numci=conv (num1 denPID);denc1=polyadd(conv(denPID,den1),conv(numPID,num1);t=0:0.1:20;figure(1)impulse(numc1,denc1,t)title(Angle)figure(2)impulse(numc2,denc2,t)title(Position)Simulation:We will build a closed-loop model with reference input of pendulum position and a disturbance force applied to the cart.We now begin to simulate the closed-loo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025小鴨苗買賣服務(wù)合同
- 智能手機(jī)在傳染病防控中的應(yīng)用指南
- 骨科亮點(diǎn)護(hù)理實(shí)踐體系
- 青年醫(yī)學(xué)教師授課比賽實(shí)施要點(diǎn)
- 人教版小學(xué)一年級(jí)語(yǔ)文上冊(cè)第八單元測(cè)試題
- 造口疝氣規(guī)范化護(hù)理要點(diǎn)
- 二手房交易方式之委托交易
- 學(xué)校下學(xué)期質(zhì)量管理工作總結(jié)模版
- 2024年09月26日更新【Attest】2024年美國(guó)媒體使用報(bào)告
- 服裝合作協(xié)議書
- 售后維修服務(wù)單
- 國(guó)家中長(zhǎng)期科技發(fā)展規(guī)劃綱要2021-2035
- ZDY3200S型煤礦用全液壓坑道鉆機(jī)行業(yè)資料礦業(yè)工程
- 北師大版八年級(jí)數(shù)學(xué)下冊(cè) (一元一次不等式)一元一次不等式和一元一次不等式組課件(第2課時(shí))
- 南京市小學(xué)英語(yǔ)六年級(jí)小升初期末試卷(含答案)
- 國(guó)開電大本科《理工英語(yǔ)3》機(jī)考真題(第005套)
- 護(hù)理安全警示教育PPT
- 草圖大師基礎(chǔ)命令教程
- 清華大學(xué)工商管理專業(yè)課程設(shè)置
- GB/T 42409-2023物聯(lián)網(wǎng)電子價(jià)簽系統(tǒng)總體要求
- 葫蘆島市白狼山新一代天氣雷達(dá)塔樓及配套基礎(chǔ)設(shè)施建設(shè)項(xiàng)目環(huán)評(píng)報(bào)告
評(píng)論
0/150
提交評(píng)論