WeightedBoundednessinMorreySpacesfor.doc_第1頁
WeightedBoundednessinMorreySpacesfor.doc_第2頁
WeightedBoundednessinMorreySpacesfor.doc_第3頁
WeightedBoundednessinMorreySpacesfor.doc_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

精品論文推薦weighted boundedness in morrey spaces forsublinear operators1hou weijie, liu mingjubeijing university of aeronautics and astronautics (100191)abstractthe classical morrey spaces were introduced by morrey to study the local behaviour of solutions tosecond order elliptic partial differential equations. since then these spaces play a very import role in studying the regularity of solutions to second order elliptic partial differential equations.as morrey spaces may be considered as an extension of lebesgue spaces, it is natural and important to study the weighted boundedness for operaters in morrey spaces. much work in this direction has been done.the studying of sublinear operators is very active these years, in this paper, the authors introduce a type of topological structure in the cartesian product and a set function, and in advance discuss weighted boundedness of sublinear operators in morrey spaces. the result improve and extend the known results. keywords: sublinear operator; morrey spaces; weight functionclc number: o177.31. introduction and the main resultsthe classical morrey spaces were introduced by morrey to study the local behaviour of solutions to second order elliptic partial differential equations. as morrey spaces may be considered as an extension of lebesgue spaces, it is natural and important to study the weightedboundedness for operaters in morrey spaces. much work in this direction has been done- 4 -(145), our results extend that in this papers. in the following,x e denotes the characteristicfunction of the set e , c is a constant, not necessarily the same in each line.let be a positively growth function on (0, )and satisfy a doubling condition, thatis (2r ) d (r) , where d is a constant independent of r , is a weight function onrn .assumethatvisasetandrn vhassometopologicalstructure.letrn v = ( x, t ) : x rn , t v , is the borel measure on rn v . is a funtionmapping the balls inrn into the borel sets innrn vand satisfies:(1) ifb1 , b2are balls inrwith b1 i b2 = , then (b1 ) i (b2 ) = ;(2) ifb1 b2 , then ( b1 ) (b2 ) ;(3) for anyx rn ,u (b( x, r ) = rn v .r 0*let be a young function and satisfy the conditon 2 or p , that is for anyt 0 , (2t ) c (t ) , or there existsk 1 , such that (2t) 2k p (t)for anyt 0and0 p 0 (r)we define the generalized morrey spaces onrn vas follows1 本課題得到國家自然科學(xué)基金(10726008)的資助。l(rv , ) = f :| f | , . , nl ( )let g be a locally integrable function on rn , ifrn v = rn ,d ( y, t ) = ( x)dx , then weobtain the generalized morrey spaces onrn .l , (rn , ) = g :| g |= sup1 (| g ( y) |) ( y)d 0 (r) b ( x,r )if (r) = r , 0 , (t) = t pspace(see3)., thenlp , = lp , which is the classical morreyin the following we will give the main results of this paper.theoremsuppose that t is a sublinear operator and(, ) c1 ( ) , that issup ( (b) c ( x)a.e.xb (b)if t is bounded froml (rn , ) tol (rn v , ) , i.e. (| tf ( y, t ) |)d ( y, t) c (| f ( y) |) ( y)d ,rn vrnthen t is also bounded froml , (rn , )to l , (rn v , ) , that is| tf | , c | f | , .l ( )l ( )where c is a constant, not necessarily the same in each line.2. proof of the theoremlet us first give two lemmas before we prove our theorem.nlemma 1 let(, ) c1 ( ) , 1 d 2, for a locally integrable function g onrn v, letg* ( x) = sup1| g ( y, t) | d ( y, t ), then for anyb = b( x, r )andxb (b)young function ,we have ( b ) (| f ( y) |) x *( y)d c (r) | f |.rn ( b )l , ( )lemma 2 letg 0be a locally integrable function onrn vand be a positiveborel measure onrn v . if for any(, ) c1 ( ) , the sublinear operator t is boundedfrom l ( rn , ) tol (rn v , ) ,then (| tf ( y, t ) |) g ( y, t)d ( y, t) c (| f ( y) |) g* ( y)d .rn vrnproof of lemma 1 by(, ) c1 ( )x *( y) = sup1| x( x, t ) | d ( x, t) ( b )yq (q) (q ) ( b )= sup1 ( (q) i ( b)yq (q) sup1 ( (q)yq (q) c ( y)then we have (| f ( y) |) x *( y)d rn= b ( b )* (| f ( y) |) x ( b )( y)d +* 2k +1 b / 2k bk =0 (| f ( y) |) x ( b )( y)d c b (| f ( y) |) ( y)d + c 2k +1 b / 2k bk = 0 (| f ( y) |) ( y)d c (| f ( y) |) ( y)d + c 2 kn (| f ( y) |) ( y)d b c2 kn2k bk =1 (| f ( y) |) ( y)d 2k bk =0 c 2 kn (2kr) | f | , l ( )k =0 c 2 knkd (r ) | f | , l ( )k =0 c (r ) | f | , l ( )the last inequality holds because of the fact that the series0 2 n d 1 . (2 n d)kk = 0is covergent sinceproof of lemma 2 let haved ( x, t) = g ( x, t )d ( x, t ), ( x) = g * ( x) ,by the definition ofg* , weg* ( y) = sup1| g ( y, t ) | d ( y, t )yb (b) ( b )= sup1 ( (b)yb (b) c ( y)(c 1)fromit is obvious that(, ) c1 ( ) ,then by the assumption of lemma 2,t is boundedl ( rn , ) tol (rn v , ) ,we get (| tf ( y, t) |) g ( y, t)d ( y, t ) = (| tf ( y, t) |)d ( y, t)rn v rn v . c rn (| f ( y) |) ( y)d crn (| f ( y) |) g* ( y)d now let us turn to the proof of our theorem.fix a ballb = b( x, r) rn , and takingg ( y, t ) = x ( b )( y, t)in lemma 2 and by usinglemma 1, we have ( b ) (| tf ( y, t ) |)d ( y, t )= rn v (t | f ( y, t ) |) x ( b ) ( y, t)d ( y, t ) c rn (| f ( y) |) x *( y)d c (r ) | f | , ( b )l ( )that is| tf | , c | f | , .l ( )l ( )the proof of the theorem is complete.+remark.(1) ifrn v = rn+1 , (t ) = t p , (b) = b% = ( y, t ) rn+1 : y b, 0 t r ,we get the theorem in 4.+(2) ifrn v = rn+1 , (b) = b% , our result is the same as that in 5.(3) as maximal operators are included in sublinear operators, so our results partly extend the one in 6references1 mizuhara l t. boundedness of some classical operators on generalized morrey spaces in harmonic analysis, icm-90 conference proceedings(ed.s.igari), tokyo:springer-verlag, 1991:183-1892 j.o.stromberg. bounded mean oscillation with orlicz

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論