




已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省臨漳縣第一中學2018-2019學年高二數(shù)學上學期期中試題 理一、選擇題(本大題共12小題,共60.0分)1. 實數(shù)集R,設(shè)集合P=x|x2-4x+30,Q=x|x2-40,則P(RQ)=()A. B. C. D. 2. ABC的內(nèi)角A、B、C的對邊分別為a、b、c已知a=,c=2,cosA=,則b=()A. B. C. 2D. 33. 在ABC中,角A,B,C所對的邊分別為a,b,c,且.若sinBsinC=sin2A,則ABC的形狀是()A. 等腰三角形B. 直角三角形C. 等邊三角形D. 等腰直角三角形4. 已知數(shù)列an滿足a1=1,an+1=an+2n,則a10=()A. 1024B. 1023C. 2048D. 20475. ABC中,abc分別為ABC的對邊,如果abc成等差數(shù)列,B=30,ABC的面積為,那么b等于()A. B. C. D. 6. 在ABC中,A=75,B=45,則ABC的外接圓面積為()A. B. C. 2D. 47. 設(shè)x,y滿足約束條件,則z=x+y的最大值為( )A. 0B. 1C. 2D. 38. 設(shè)x,y滿足約束條件,目標函數(shù)的最大值為2,則的最小值為()A. B. C. D. 9. 給出如下四個命題:若“p且q”為假命題,則p、q均為假命題;命題“若ab,則2a2b-1”的否命題為“若ab,則2a2b-1”;“xR,x2+11”的否定是“xR,x2+11”;在ABC中,“AB”是“sinAsinB”的充要條件其中正確的命題的個數(shù)是()A. 1B. 2C. 3D. 410. 方程表示雙曲線的一個充分不必要條件是()A. -3m0B. -3m2C. -3m4D. -1m311. 若曲線表示橢圓,則k的取值范圍是A. B. C. D. 或12. 已知雙曲線=1(a0,b0),點A、F分別為其右頂點和右焦點,B1(0,b),B2(0,-b),若B1FB2A,則該雙曲線的離心率為()A. B. C. D. 二、填空題(本大題共4小題,共20.0分)13. 在ABC中,a=,b=1,A=,則cosB= _ 14. 若等差數(shù)列an滿足a7+a8+a90,a7+a100,則當n= _ 時,an的前n項和最大15. 若命題“tR,t2-2t-a0”是假命題,則實數(shù)a的取值范圍是_16. 點P是橢圓+=1上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,若|PF1|PF2|=12,則F1PF2的大小_ 三、解答題(本大題共6小題,共70.0分)17. 已知a,b,c分別是ABC內(nèi)角A,B,C的對邊,且滿足(b-c)2=a2-bc(1)求角A的大??;(2)若a=3,sinC=2sinB,求ABC的面積18. 設(shè)數(shù)列an滿足a1+3a2+(2n-1)an=2n(1)求an的通項公式;(2)求數(shù)列的前n項和19. 設(shè)集合A=x|x29,B=x|(x-2)(x+4)0(1)求集合AB;(2)若不等式2x2+ax+b0的解集為AB,求a、b的值20. 設(shè)p:實數(shù)x滿足x2+2ax-3a20(a0),q:實數(shù)x滿足x2+2x-80,且p是q的必要不充分條件,求a的取值范圍21. 已知橢圓C:(ab0)的兩個焦點分別為F1,F(xiàn)2,離心率為,過F1的直線l與橢圓C交于M,N兩點,且MNF2的周長為8(1)求橢圓C的方程;(2)若直線ykxb與橢圓C分別交于A,B兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論22. 已知雙曲線的漸近線方程為,左焦點為F,過A(a,0),B(0,-b)的直線為l,原點到直線l的距離是(1)求雙曲線的方程;(2)已知直線y=x+m交雙曲線于不同的兩點C,D,問是否存在實數(shù)m,使得以CD為直徑的圓經(jīng)過雙曲線的左焦點F若存在,求出m的值;若不存在,請說明理由答案和解析1.【答案】D【解析】【分析】本題考查了解不等式與集合的運算問題,是基礎(chǔ)題解不等式求得集合P、Q,再根據(jù)補集與并集的定義計算即可【解答】解:實數(shù)集R,集合P=x|x2-4x+30=x|1x3,Q=x|x2-40=x|-2x2,RQ=x|x-2或x2,P(RQ)=x|x-2或x1=(-,-21,+)故選D2.【答案】D【解析】解:a=,c=2,cosA=,由余弦定理可得:cosA=,整理可得:3b2-8b-3=0,解得:b=3或-(舍去)故選:D由余弦定理可得cosA=,利用已知整理可得3b2-8b-3=0,從而解得b的值本題主要考查了余弦定理,一元二次方程的解法在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題3.【答案】C【解析】【分析】b2+c2=a2+bc,利用余弦定理可得cosA=,可得由sin BsinC=sin2A,利正弦定理可得:bc=a2,代入b2+c2=a2+bc,可得b=c本題考查了正弦定理余弦定理、等邊三角形的判定方法,考查了推理能力與計算能力,屬于中檔題本題主要考查了正余弦定理的應(yīng)用,運用正余弦定理來判斷三角形各個角之間的關(guān)系,屬于簡單題.【解答】解:在ABC中,b2+c2=a2+bc,cosA=,A(0,),bc=a2,代入b2+c2=a2+bc,(b-c)2=0,解得b=cABC的形狀是等邊三角形故選:C4.【答案】B【解析】解:數(shù)列an滿足a1=1,an+1=an+2n,an=a1+(a2-a1)+(an-an-1)=1+21+22+2n-1=2n-1(nN*)a10=210-1=1023故選:B由已知遞推式,利用累加求和及等比數(shù)列的前n項和公式即可求出正確理解遞推式,熟練掌握“累加求和”方法及等比數(shù)列的前n項和公式是解題的關(guān)鍵5.【答案】B【解析】【分析】由題意可得2b=a+c平方后整理得a2+c2=4b2-2ac利用三角形面積可求得ac的值,代入余弦定理可求得b的值本題考查等差數(shù)列和三角形的面積,涉及余弦定理的應(yīng)用,屬基礎(chǔ)題【解答】解:a,b,c成等差數(shù)列,2b=a+c平方得a2+c2=4b2-2ac又ABC的面積為,且B=30,由SABC=acsinB=acsin30=ac=,解得ac=6,代入式可得a2+c2=4b2-12,由余弦定理cosB=解得b2=4+2,又b為邊長,b=1+故選B6.【答案】B【解析】【分析】本題考查正弦定理,求出外接圓的半徑是解決問題的關(guān)鍵,屬基礎(chǔ)題【解答】解:在中,設(shè)的外接圓半徑為,則由正弦定理可得=,解得,故的外接圓面積,故選7.【答案】D【解析】【分析】本題考查線性規(guī)劃的簡單應(yīng)用,考查約束條件的可行域,利用目標函數(shù)的幾何意義,判斷目標函數(shù)的最優(yōu)解是解題的關(guān)鍵.解:x,y滿足約束條件的可行域如圖:z=x+y即y=-x+z,當直線過點A時,直線y=-x+z的截距最大,z的值最大.由解得A(3,0),所以z=x+y 的最大值為3.故選D.8.【答案】C【解析】【分析】先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為y軸上的截距,只需求出直線,過可行域內(nèi)的點(1,4)時取得最大值,從而得到一個關(guān)于a,b的等式,最后利用基本不等式求最小值即可本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題【解答】解:不等式表示的平面區(qū)域如圖所示陰影部分,當直線過直線與的交點時,目標函數(shù)取得最大,即,則;當且僅當時等號成立;故選:C9.【答案】C【解析】【分析】本題以命題的真假判斷與應(yīng)用為載體考查了復(fù)合命題,四種命題,全稱命題,充要條件等知識點,難度中檔.根據(jù)復(fù)合命題真假判斷的真值表,可判斷;根據(jù)四種命題的定義,可判斷;根據(jù)全稱命題的否定,可判斷;根據(jù)充要條件的定義,可判斷.【解答】解:若“p且q”為假命題,則p、q存在至少一個假命題,但不一定均為假命題,故錯誤;命題“若ab,則”的否命題為“若,則”,故正確;“,”的否定是“,”,故正確;在中,“”“ab”“2RsinA2RsinB”“sinAsinB”,故“AB”是“sinAsinB”的充要條件,故正確.故選C.10.【答案】A【解析】【分析】本題考查雙曲線的幾何性質(zhì),涉及充分必要條件的判定,關(guān)鍵是掌握二元二次方程表示雙曲線的條件【解答】解:根據(jù)題意,方程表示雙曲線,則有(m-2)(m+3)0,解可得-3m2,要求方程表示雙曲線的一個充分不必要條件,即要求的是m|-3m2的真子集;依次分析選項:A符合條件,故選A11.【答案】D【解析】【分析】曲線表示橢圓,可得,解出即可得出本題考查了橢圓的標準方程及其性質(zhì)、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題【解答】解:曲線表示橢圓,解得-1k1,且k0故選:D12.【答案】C【解析】【分析】根據(jù)題意,設(shè)A(a,0),F(xiàn)(c,0),由向量的坐標計算公式可得=(c,-b),=(a,b),進而分析可得=ac-b2=0,結(jié)合雙曲線的幾何性質(zhì),可得c2-a2-ac=0,由離心率公式變形可得e2-e-1=0,解可得e的值,即可得答案本題考查雙曲線的幾何性質(zhì),關(guān)鍵是由B1FB2A分析a、b、c的關(guān)系【解答】解:根據(jù)題意,已知雙曲線=1(a0,b0),點A、F分別為其右頂點和右焦點,設(shè)A(a,0),F(xiàn)(c,0),則=(c,-b),=(a,b),若B1FB2A,則有=ac-b2=0,又由c2=a2+b2,則有c2-a2-ac=0,變形可得:e2-e-1=0,解可得e=或(舍)故e=,故選C13.【答案】【解析】解:a=,b=1,A=, 由正弦定理可得:sinB=, ba,B為銳角, cosB= 故答案為: 由已知利用正弦定理可求sinB,利用大邊對大角可求B為銳角,利用同角三角函數(shù)基本關(guān)系式可求cosB的值 本題主要考查了正弦定理,大邊對大角,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題14.【答案】8【解析】解:由等差數(shù)列的性質(zhì)可得a7+a8+a9=3a80, a80,又a7+a10=a8+a90,a90, 等差數(shù)列an的前8項為正數(shù),從第9項開始為負數(shù), 等差數(shù)列an的前8項和最大, 故答案為:8 可得等差數(shù)列an的前8項為正數(shù),從第9項開始為負數(shù),進而可得結(jié)論 本題考查等差數(shù)列的性質(zhì)和單調(diào)性,屬中檔題15.【答案】(-,-1【解析】解:命題“tR,t2-2t-a0”是假命題,則tR,t2-2t-a0是真命題,=4+4a0,解得a-1實數(shù)a的取值范圍是(-,-1故答案為:(-,-1命題“tR,t2-2t-a0”是假命題,則tR,t2-2t-a0是真命題,可得0本題考查了方程與不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題16.【答案】60【解析】解:橢圓+=1, 可得2a=8,設(shè)|PF1|=m,|PF2|=n, 可得, 化簡可得:cosF1PF2= F1PF2=60 故答案為:60 利用橢圓的定義,結(jié)合余弦定理,已知條件,轉(zhuǎn)化求解即可 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力17.【答案】解:(1)(b-c)2=a2-bc,可得:b2+c2-a2=bc,由余弦定理可得:cosA=,又A(0,),A=,(2)由sinC=2sinB及正弦定理可得:c=2b,a=3,A=,由余弦定理可得:a2=b2+c2-2bccosA=b2+c2-bc=3b2,解得:b=,c=2,SABC=bcsinA=.【解析】(1)由已知等式可得b2+c2-a2=bc,由余弦定理可得cosA=,結(jié)合范圍A(0,),即可求得A的值(2)由sinC=2sinB及正弦定理可得c=2b,又a=3,A=,由余弦定理可解得b,c的值,利用三角形面積公式即可得解18.【答案】解:(1)數(shù)列an滿足a1+3a2+(2n-1)an=2nn2時,a1+3a2+(2n-3)an-1=2(n-1)(2n-1)an=2an=當n=1時,a1=2,上式也成立an=(2)=-數(shù)列的前n項和=+=1-=【解析】本題考查了數(shù)列遞推關(guān)系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題(1)利用數(shù)列遞推關(guān)系即可得出(2)=-利用裂項求和方法即可得出19.【答案】解:集合A=x|x29=x|-3x3,B=x|(x-2)(x+4)0=x|-4x2;(1)集合AB=x|-3x2;(2)AB=x|-4x3,且不等式2x2+ax+b0的解集為(-4,3),2x2+ax+b=0的根是-4和3,由根與系數(shù)的關(guān)系得,解得a=2,b=-24【解析】(1)化簡集合A、B,根據(jù)交集的定義進行計算即可;(2)求出A、B的并集,再由根與系數(shù)的關(guān)系,即可求出a、b的值本題考查了集合的化簡與運算,以及根與系數(shù)的關(guān)系應(yīng)用問題,是基礎(chǔ)題目20.【答案】解:因為p:-3axaq:-4x2,因為p是q的必要不充分條件,所以p能推出q,q不能推出p所以x|-3axax|-4x2,故滿足解得0a【解析】解兩個不等式,將p和q表示為x的集合,然后由p是q的必要不充分條件得兩個集合之間的包含關(guān)系,結(jié)合數(shù)軸構(gòu)造關(guān)于a的不等式,求解即可本題考查了充分條件、必要條件與集合關(guān)系之間的轉(zhuǎn)化,考查了解不等式組,考查了推理能力與計算能力,屬于基礎(chǔ)題21.【答案】解:(1)由題意知,4a=8,則a=2,由橢圓離心率e=,則b2=3橢圓C的方程;(2)由題意,當直線AB的斜率不存在,此時可設(shè)A(x0,x0),B(x0,-x0)又A,B兩點在橢圓C上,點O到直線AB的距離,當直線AB的斜率存在時,設(shè)直線AB的方程為y=kx+b設(shè)A(x1,y1),B(x2,y2)聯(lián)立方程,消去y得(3+4k2)x2+8kbx+4b2-12=0由已知0,x1+x2=-,x1x2=,由OAOB,則x1x2+y1y2=0,即x1x2+(kx1+b)(kx2+b)=0,整理得:(k2+1)x1x2+kb(x1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤基高端新材料項目建議書(參考)
- 歷史建筑修繕工程規(guī)劃設(shè)計方案(參考模板)
- 老字號品牌振興計劃可行性研究報告(模板)
- 淮北師范大學《煤的潔凈燃燒與高效利用技術(shù)》2023-2024學年第二學期期末試卷
- 合肥幼兒師范高等專科學?!毒幊涕_發(fā)》2023-2024學年第二學期期末試卷
- 的車輛安全檢查工作制度
- 河北師范大學《量子力學ⅡA》2023-2024學年第二學期期末試卷
- 長沙學院《舞臺演播室形體》2023-2024學年第二學期期末試卷
- 西北工業(yè)大學《飛行器制導與控制》2023-2024學年第二學期期末試卷
- 湖州職業(yè)技術(shù)學院《金屬材料制備實驗》2023-2024學年第二學期期末試卷
- 三年級數(shù)學下冊《面積》練習試卷及答案
- 室內(nèi)裝飾醫(yī)療貝斯板技術(shù)交底
- 變電站施工進度計劃節(jié)點橫道圖
- 會計師事務(wù)所自查自糾報告范文3篇
- 信用評級ppt全套教學課件
- 2022年煙臺毓璜頂醫(yī)院醫(yī)護人員招聘考試筆試題庫及答案解析
- 教師專業(yè)發(fā)展第3章-教師專業(yè)發(fā)展趨向課件
- 安裝調(diào)試培訓及驗收方案
- 現(xiàn)場跟蹤審計工作要點
- 公制螺紋公差速查表
- 《山東省消防條例》(2022年最新版)[1]
評論
0/150
提交評論