




已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
6.4平面向量的應(yīng)用最新考綱考情考向分析會用向量方法解決某些簡單的平面幾何問題.主要考查平面向量與函數(shù)、三角函數(shù)、不等式、數(shù)列、解析幾何等綜合性問題,求參數(shù)范圍、最值等問題是考查的熱點,一般以選擇題、填空題的形式出現(xiàn),偶爾會出現(xiàn)在解答題中,屬于中檔題.1向量在平面幾何中的應(yīng)用(1)用向量解決常見平面幾何問題的技巧:問題類型所用知識公式表示線平行、點共線等問題共線向量定理ababx1y2x2y10,其中a(x1,y1),b(x2,y2),b0垂直問題數(shù)量積的運算性質(zhì)abab0x1x2y1y20,其中a(x1,y1),b(x2,y2),且a,b為非零向量夾角問題數(shù)量積的定義cos(為向量a,b的夾角),其中a,b為非零向量長度問題數(shù)量積的定義|a|,其中a(x,y),a為非零向量(2)用向量方法解決平面幾何問題的步驟平面幾何問題向量問題解決向量問題解決幾何問題2向量在解析幾何中的應(yīng)用向量在解析幾何中的應(yīng)用,是以解析幾何中的坐標(biāo)為背景的一種向量描述它主要強調(diào)向量的坐標(biāo)問題,進而利用直線和圓錐曲線的位置關(guān)系的相關(guān)知識來解答,坐標(biāo)的運算是考查的主體3向量與相關(guān)知識的交匯平面向量作為一種工具,常與函數(shù)(三角函數(shù))、解析幾何結(jié)合,常通過向量的線性運算與數(shù)量積,向量的共線與垂直求解相關(guān)問題概念方法微思考1根據(jù)你對向量知識的理解,你認為可以利用向量方法解決哪些幾何問題?提示(1)線段的長度問題(2)直線或線段平行問題(3)直線或線段垂直問題(4)角的問題等2如何用向量解決平面幾何問題?提示用向量表示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為向量問題然后通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題,最后把運算結(jié)果“翻譯”成幾何關(guān)系題組一思考辨析1判斷下列結(jié)論是否正確(請在括號中打“”或“”)(1)若,則A,B,C三點共線()(2)在ABC中,若0,n0,則由2,得(n,0)(m2,m)2(n,0)(m,m),所以n(m2)2nm,化簡得m2.故(m,m)(m2,m)2m22m12.(2)(2018浙江聯(lián)盟校聯(lián)考)已知動點P是邊長為的正方形ABCD的邊上任意一點,MN是正方形ABCD的外接圓O的一條動弦,且MN,則的取值范圍是_答案解析如圖,取MN的中點H,連接PH,則,因為MN,所以222,當(dāng)且僅當(dāng)點P,H重合時取到最小值當(dāng)P,H不重合時,連接PO,OH,易得OH,則2()222222|cosPOH2|cosPOH2|,當(dāng)且僅當(dāng)P,O,H三點共線,且P在A,B,C,D其中某一點處時取到等號,所以21,故的取值范圍為.命題點2三角形的“四心”例2已知O是平面上的一定點,A,B,C是平面上不共線的三個動點,若動點P滿足(),(0,),則點P的軌跡一定通過ABC的()A內(nèi)心B外心C重心D垂心答案C解析由原等式,得(),即(),根據(jù)平行四邊形法則,知是ABC的中線AD(D為BC的中點)所對應(yīng)向量的2倍,所以點P的軌跡必過ABC的重心引申探究1在本例中,若動點P滿足,(0,),則如何選擇?答案A解析由條件,得,即,而和分別表示平行于,的單位向量,故平分BAC,即平分BAC,所以點P的軌跡必過ABC的內(nèi)心2在本例中,若動點P滿足,(0,),則如何選擇?答案D解析由條件,得,從而0,所以,則動點P的軌跡一定通過ABC的垂心命題點3平面向量與解三角形例3(1)O是ABC的外心(三角形外接圓的圓心)若,則BAC等于()A30B45C60D90答案C解析取BC的中點D,連接AD,則2.由題意得32,AD為BC的中線且O為重心又O為外心,ABC為正三角形,BAC60,故選C.(2)在ABC中,AB8,AC6,AD垂直BC于點D,E,F(xiàn)分別為AB,AC的中點,若6,則BC等于()A2B10C2D14答案A解析由題意,知DEAE4,DFAF3,|cosEDF|6,|,BC2.思維升華向量與平面幾何綜合問題的解法(1)坐標(biāo)法把幾何圖形放在適當(dāng)?shù)淖鴺?biāo)系中,則有關(guān)點與向量就可以用坐標(biāo)表示,這樣就能進行相應(yīng)的代數(shù)運算和向量運算,從而使問題得到解決(2)基向量法適當(dāng)選取一組基底,溝通向量之間的聯(lián)系,利用向量間的關(guān)系構(gòu)造關(guān)于未知量的方程進行求解跟蹤訓(xùn)練1 (1)(2018杭州二模)設(shè)P為ABC所在平面上一點,且滿足34m(m0)若ABP的面積為8,則ABC的面積為_答案14解析由34m,可得,可設(shè),則D,A,C共線,且D在線段AC上,可得,D分AC的比為43,C到直線AB的距離等于P到直線AB的距離的倍,故SABCSABP814.(2)(2018浙江十校聯(lián)盟適應(yīng)性考試)已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AD,BC上,且DEEA,CF2FB,如果對于常數(shù),在正方形ABCD的四條邊上(不含頂點)有且僅有2個不同的點P,使得,則的取值范圍為_答案解析由題意作出圖形如圖所示,連接EF,取EF的中點G,連接PG,則()()()()22222.由已知和圖形可得以點G為圓心,PG為半徑的圓只能與AB相交,與BC,AD,CD相離,得PG,易得.題型二向量在解析幾何中的應(yīng)用命題點1向量共線的應(yīng)用例4 (1)已知向量(k,12),(4,5),(10,k),且A,B,C三點共線,當(dāng)k0時,若k為直線的斜率,則過點(2,1)的直線方程為_(2)已知梯形ABCD,其中ABCD,且DC2AB,三個頂點A(1,2),B(2,1),C(4,2),則點D的坐標(biāo)為_答案(1)2xy30(2)(2,4)解析(1)(4k,7),(6,k5),且,(4k)(k5)670,解得k2或k11.由k0,n0),則mn1,(x,n),(mx,n)2x2mxn2m22n2m2n2m2,而n2m2mn,故當(dāng)x且nm,即當(dāng)m,n,x時,2取最小值.(2)(2018紹興、諸暨期末)已知ABC,滿足,點D為線段AB上一動點,若的最小值為3,則ABC的面積S等于()A9B9C18D18答案D解析因為,所以由平面向量的基本定理得,記|3m,|2m(其中m0),則由|m,得cosA,設(shè)t(1t0),故t(t)3m2(3t2t)m23,即m212,因此SABC|sinA18,故選D.思維升華向量在解析幾何中的“兩個”作用(1)載體作用:向量在解析幾何問題中出現(xiàn),多用于“包裝”,解決此類問題的關(guān)鍵是利用向量的意義、運算脫去“向量外衣”,導(dǎo)出曲線上點的坐標(biāo)之間的關(guān)系,從而解決有關(guān)距離、斜率、夾角、軌跡、最值等問題(2)工具作用:利用abab0(a,b為非零向量),abab(b0),可解決垂直、平行問題,特別地,向量垂直、平行的坐標(biāo)表示對于解決解析幾何中的垂直、平行問題是一種比較簡捷的方法跟蹤訓(xùn)練2 (1)已知點A在橢圓1上,點P滿足(1)(R)(O是坐標(biāo)原點),且72,則線段OP在x軸上投影的最大值為_答案15解析因為(1),所以,即O,A,P三點共線,因為72,所以|272,設(shè)A(x,y),OA與x軸正方向的夾角為,線段OP在x軸上的投影為|cos|x|15,當(dāng)且僅當(dāng)|x|時取等號(2)(2018浙江寧波高三適應(yīng)性考試)已知點M為單位圓x2y21上的動點,點O為坐標(biāo)原點,點A在直線x2上,則的最小值為_答案2解析由題意得()|2|2|cos,其中為向量和的夾角,因為點A在直線x2上,所以|2,則由二次函數(shù)的性質(zhì)易得當(dāng)|2時,|2|cos取得最小值42cos,則當(dāng)cos1,即向量和方向相反時,取得最小值2.1在ABC中,()|2,則ABC的形狀一定是()A等邊三角形B等腰三角形C直角三角形D等腰直角三角形答案C解析由()|2,得()0,即()0,20,A90.又根據(jù)已知條件不能得到|,故ABC一定是直角三角形2已知點A(2,0),B(3,0),動點P(x,y)滿足x2,則點P的軌跡是()A圓B橢圓C雙曲線D拋物線答案D解析(2x,y),(3x,y),(2x)(3x)y2x2,y2x6,即點P的軌跡是拋物線3(2018湖州質(zhì)檢)已知O是ABC的外心,C45,若mn(m,nR),則mn的取值范圍是()A, B,1)C,1) D(1,答案B解析O是ABC的外心,C45,AOB90,又mn,兩邊平方可得m2n21,(mn)22(m2n2)2,當(dāng)且僅當(dāng)mn時,等號成立,mn.又由題意可知,m,n不能同時為正,mn1,故mn的取值范圍是,1)4(2018溫州高考適應(yīng)性測試)如圖,已知ABC的邊BC的垂直平分線交BC于點Q,交AC于點P,若|1,|2,則的值為()A3B.C.D.答案B解析連接AQ,因為PQ垂直平分BC,所以,(),所以()()()(22)(2212).故選B.5過拋物線y22px(p0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準(zhǔn)線的交點為B,點A在拋物線的準(zhǔn)線上的射影為C,若,48,則拋物線的方程為()Ay28xBy24xCy216xDy24x答案B解析如圖所示,由,得F為線段AB的中點,|AF|AC|,ABC30,由48,得|BC|4.則|AC|4,由中位線的性質(zhì),有p|AC|2,故拋物線的方程為y24x.故選B.6(2018浙江六校協(xié)作體聯(lián)考)已知O為坐標(biāo)原點,(3,1),|,當(dāng)AOB的面積取得最大值時,等于()A(2,4) B(4,2)C(2,4)或(4,2) D(2,4)或(4,2)答案C解析方法一由于|,則點B在以點O(0,0)為圓心,為半徑的圓上,由數(shù)形結(jié)合易知,要使AOB的面積取得最大值,則需滿足.設(shè)(a,b),則解得或當(dāng)時,(1,3),則(1,3)(3,1)(2,4);當(dāng)時,(1,3),則(1,3)(3,1)(4,2)綜上,(2,4)或(4,2)故選C.方法二由于|,則點B在以點O(0,0)為圓心,為半徑的圓上,由數(shù)形結(jié)合易知,要使AOB的面積取得最大值,則需滿足.在平面直角坐標(biāo)系中,畫出向量,當(dāng)如圖1所示時,過點A作AAx軸于點A,過點B作BBx軸于點B,則OBBAOA,又|,所以RtAOARtOBB,則|OB|AA|1,|BB|OA|3,所以B(1,3),(1,3),(1,3)(3,1)(2,4),當(dāng)如圖2所示時,同理可得B(1,3),(1,3),(1,3)(3,1)(4,2),綜上,(2,4)或(4,2)故選C.7已知向量(3,4),(0,3),(5m,3m),若點A,B,C能構(gòu)成三角形,則實數(shù)m滿足的條件是_答案m解析由題意得(3,1),(2m,1m),若A,B,C能構(gòu)成三角形,則,不共線,則3(1m)1(2m),解得m.8(2009浙江改編)設(shè)向量a,b滿足:|a|3,|b|4,ab0,以a,b,ab的模為邊長構(gòu)成三角形,則它的邊與半徑為1的圓的公共點個數(shù)最多為_答案4解析由|a|3,|b|4及ab0知ab,故a,b,ab構(gòu)成直角三角形,且|ab|5.又其內(nèi)切圓半徑為1.如圖所示將內(nèi)切圓向上或向下平移可知該圓與該直角三角形最多有4個交點9已知圓C:(x2)2y24,圓M:(x25cos)2(y5sin)21(R),過圓M上任意一點P作圓C的兩條切線PE,PF,切點分別為E,F(xiàn),則的最小值是_答案6解析圓C:(x2)2y24的圓心為C(2,0),半徑等于2,圓M:(x25cos)2(y5sin)21,圓心M(25cos,5sin),半徑等于1.|CM|521,兩圓相離如圖所示,設(shè)直線CM和圓M交于H,G兩點,則的最小值是.|HC|CM|1514,|HE|HF|2,sinCHE,cosEHFcos2CHE12sin2CHE,|cosEHF226.10已知點D為ABC所在平面上一點,且滿足,若ACD的面積為1,則ABD的面積為_答案4解析由,得54,所以4(),即4.所以點D在邊BC上,且|4|,所以SABD4SACD4.11已知直線2xy20與x軸、y軸的交點分別為A,B,橢圓1(ab0)的左焦點F1和上頂點D,若0,則該橢圓的離心率e_.答案解析因為直線2xy20與x軸、y軸的交點分別為A,B,所以A(1,0),B(0,2),又F1(c,0),D(0,b),所以(c,2),(1,b)因為0,所以c2b0,所以,即,所以,所以該橢圓的離心率e.12.如圖,設(shè)正BCD的外接圓O的半徑為R,點A在BD下方的圓弧上,則的最小值為_答案解析因為|2|(|1)2,因為R|2R,而R0,b0)的左、右焦點,點P在第一象限,且滿足|a,()0,線段PF2與雙曲線C交于點Q,若5,則雙曲線C的漸近線方程為()AyxByxCyxDyx答案B解析由()0,可得|2c,|QF1|a,|QF2|,在QF1F2中,由余弦定理得,cosF1F2Q,即,ca,ba,雙曲線的漸近線方程為yx.14(2018浙江杭州市地區(qū)聯(lián)考)在ABC中,AB5,AC4,BAC60,M為ABC內(nèi)一點,SMABSMCBSMAC123,則等于()A.BC.D答案C解析如圖,延長BM交AC于點D,由SMABSMCBSMAC123,可得SMACSCAB,所以M為BD的中點,設(shè)k,則SABDkSCBD,SAMDkSCMD,兩式相減得SMABkSMCB,故k.所以,.所以22162554.15(2018杭州市高級中學(xué)仿真測試)記mina,b已知向量a,b,c滿足|a|1,|b|2,且ab1,若cab(,0,且21),則當(dāng)minac,bc取最大值時,|c|_.答案1解析設(shè)向量a與b的夾角為,則ab|a|b|cos2cos1,所以cos,所以60
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 共享經(jīng)濟模式下的物流服務(wù)合作協(xié)議
- 專業(yè)翻譯服務(wù)協(xié)議指南
- 行政公文的政策導(dǎo)向試題及答案
- 2025房產(chǎn)中介銷售合同
- 2025合法的多人勞動合同模板
- 行政管理與演變過程解析試題及答案
- 行政管理在社會福利中的角色試題及答案
- 行政管理學(xué)考試準(zhǔn)備方案試題及答案
- 2025鄉(xiāng)村住宅設(shè)計與裝修合同書
- 2025年項目服務(wù)合同范本
- 安徽省1號卷A10聯(lián)盟2025屆高三5月最后一卷語文試題及答案
- 2025屆金融行業(yè)校招面試真題及答案
- 環(huán)保再生塑料椅行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 初中生物會考試卷及答案2024
- 2025年游戲開發(fā)與設(shè)計專業(yè)考試試卷及答案
- 美術(shù)高考集訓(xùn)班協(xié)議合同
- 中國證券經(jīng)營行業(yè)市場發(fā)展現(xiàn)狀分析及發(fā)展趨勢與投資前景研究報告
- 職業(yè)技術(shù)學(xué)院食品質(zhì)量與安全專業(yè)《食品化學(xué)》課程標(biāo)準(zhǔn)
- 公共組織績效評估-形考任務(wù)二(占10%)-國開(ZJ)-參考資料
- 貿(mào)易人居間合同協(xié)議
- 《肺結(jié)核的診斷與治療》課件
評論
0/150
提交評論