李子奈計(jì)量經(jīng)濟(jì)學(xué)4.3多重共線性.ppt_第1頁(yè)
李子奈計(jì)量經(jīng)濟(jì)學(xué)4.3多重共線性.ppt_第2頁(yè)
李子奈計(jì)量經(jīng)濟(jì)學(xué)4.3多重共線性.ppt_第3頁(yè)
李子奈計(jì)量經(jīng)濟(jì)學(xué)4.3多重共線性.ppt_第4頁(yè)
李子奈計(jì)量經(jīng)濟(jì)學(xué)4.3多重共線性.ppt_第5頁(yè)
已閱讀5頁(yè),還剩37頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

4.3 多重共線性,Multi-Collinearity,一、多重共線性的概念 二、實(shí)際經(jīng)濟(jì)問(wèn)題中的多重共線性 三、多重共線性的后果 四、多重共線性的檢驗(yàn) 五、克服多重共線性的方法 六、案例 *七、分部回歸與多重共線性,4.3 多重共線性,一、多重共線性的概念,對(duì)于模型 Yi=0+1X1i+2X2i+kXki+i i=1,2,n 其基本假設(shè)之一是解釋變量是互相獨(dú)立的。,如果某兩個(gè)或多個(gè)解釋變量之間出現(xiàn)了相關(guān)性,則稱為多重共線性(Multicollinearity)。,如果存在 c1X1i+c2X2i+ckXki=0 i=1,2,n 其中: ci不全為0,則稱為解釋變量間存在完全共線性(perfect multicollinearity)。,如果存在 c1X1i+c2X2i+ckXki+vi=0 i=1,2,n 其中ci不全為0,vi為隨機(jī)誤差項(xiàng),則稱為 近似共線性(approximate multicollinearity)或交互相關(guān)(intercorrelated)。,在矩陣表示的線性回歸模型 Y=X+ 中,完全共線性指:秩(X)k+1,即,中,至少有一列向量可由其他列向量(不包括第一列)線性表出。,如:X2= X1,則X2對(duì)Y的作用可由X1代替。,注意: 完全共線性的情況并不多見(jiàn),一般出現(xiàn)的是在一定程度上的共線性,即近似共線性。,二、實(shí)際經(jīng)濟(jì)問(wèn)題中的多重共線性,一般地,產(chǎn)生多重共線性的主要原因有以下三個(gè)方面: (1)經(jīng)濟(jì)變量相關(guān)的共同趨勢(shì) 時(shí)間序列樣本:經(jīng)濟(jì)繁榮時(shí)期,各基本經(jīng)濟(jì)變量(收入、消費(fèi)、投資、價(jià)格)都趨于增長(zhǎng);衰退時(shí)期,又同時(shí)趨于下降。 橫截面數(shù)據(jù):生產(chǎn)函數(shù)中,資本投入與勞動(dòng)力投入往往出現(xiàn)高度相關(guān)情況,大企業(yè)二者都大,小企業(yè)都小。,(2)滯后變量的引入,在經(jīng)濟(jì)計(jì)量模型中,往往需要引入滯后經(jīng)濟(jì)變量來(lái)反映真實(shí)的經(jīng)濟(jì)關(guān)系。 例如,消費(fèi)=f(當(dāng)期收入, 前期收入) 顯然,兩期收入間有較強(qiáng)的線性相關(guān)性。,(3)樣本資料的限制,由于完全符合理論模型所要求的樣本數(shù)據(jù)較難收集,特定樣本可能存在某種程度的多重共線性。 一般經(jīng)驗(yàn): 時(shí)間序列數(shù)據(jù)樣本:簡(jiǎn)單線性模型,往往存在多重共線性。 截面數(shù)據(jù)樣本:?jiǎn)栴}不那么嚴(yán)重,但多重共線性仍然是存在的。,二、多重共線性的后果,1、完全共線性下參數(shù)估計(jì)量不存在,如果存在完全共線性,則(XX)-1不存在,無(wú)法得到參數(shù)的估計(jì)量。,的OLS估計(jì)量為:,例:對(duì)離差形式的二元回歸模型,如果兩個(gè)解釋變量完全相關(guān),如x2= x1,則,這時(shí),只能確定綜合參數(shù)1+2的估計(jì)值:,2、近似共線性下OLS估計(jì)量非有效,近似共線性下,可以得到OLS參數(shù)估計(jì)量, 但參數(shù)估計(jì)量方差的表達(dá)式為,由于|XX|0,引起(XX) -1主對(duì)角線元素較大,使參數(shù)估計(jì)值的方差增大,OLS參數(shù)估計(jì)量非有效。,仍以二元線性模型 y=1x1+2x2+ 為例:,恰為X1與X2的線性相關(guān)系數(shù)的平方r2,由于 r2 1,故 1/(1- r2 )1,多重共線性使參數(shù)估計(jì)值的方差增大,1/(1-r2)為方差膨脹因子(Variance Inflation Factor, VIF),當(dāng)完全不共線時(shí), r2 =0,當(dāng)近似共線時(shí), 0 r2 1,當(dāng)完全共線時(shí), r2=1,,3、參數(shù)估計(jì)量經(jīng)濟(jì)含義不合理,如果模型中兩個(gè)解釋變量具有線性相關(guān)性,例如 X2= X1 , 這時(shí),X1和X2前的參數(shù)1、2并不反映各自與被解釋變量之間的結(jié)構(gòu)關(guān)系,而是反映它們對(duì)被解釋變量的共同影響。 1、2已經(jīng)失去了應(yīng)有的經(jīng)濟(jì)含義,于是經(jīng)常表現(xiàn)出似乎反常的現(xiàn)象:例如1本來(lái)應(yīng)該是正的,結(jié)果恰是負(fù)的。,4、變量的顯著性檢驗(yàn)失去意義,存在多重共線性時(shí),參數(shù)估計(jì)值的方差與標(biāo)準(zhǔn)差變大,容易使通過(guò)樣本計(jì)算的t值小于臨界值, 誤導(dǎo)作出參數(shù)為0的推斷,可能將重要的解釋變量排除在模型之外,5、模型的預(yù)測(cè)功能失效,變大的方差容易使區(qū)間預(yù)測(cè)的“區(qū)間”變大,使預(yù)測(cè)失去意義。,注意:,除非是完全共線性,多重共線性并不意味著任何基本假設(shè)的違背; 因此,即使出現(xiàn)較高程度的多重共線性,OLS估計(jì)量仍具有線性性等良好的統(tǒng)計(jì)性質(zhì)。 問(wèn)題在于,即使OLS法仍是最好的估計(jì)方法,它卻不是“完美的”,尤其是在統(tǒng)計(jì)推斷上無(wú)法給出真正有用的信息。,多重共線性檢驗(yàn)的任務(wù)是: (1)檢驗(yàn)多重共線性是否存在; (2)估計(jì)多重共線性的范圍,即判斷哪些變量之間存在共線性。,多重共線性表現(xiàn)為解釋變量之間具有相關(guān)關(guān)系,所以用于多重共線性的檢驗(yàn)方法主要是統(tǒng)計(jì)方法:如判定系數(shù)檢驗(yàn)法、逐步回歸檢驗(yàn)法等。,三、多重共線性的檢驗(yàn),1、檢驗(yàn)多重共線性是否存在,(1)對(duì)兩個(gè)解釋變量的模型,采用簡(jiǎn)單相關(guān)系數(shù)法 求出X1與X2的簡(jiǎn)單相關(guān)系數(shù)r,若|r|接近1,則說(shuō)明兩變量存在較強(qiáng)的多重共線性。,(2)對(duì)多個(gè)解釋變量的模型,采用綜合統(tǒng)計(jì)檢驗(yàn)法,若 在OLS法下:R2與F值較大,但t檢驗(yàn)值較小,說(shuō)明各解釋變量對(duì)Y的聯(lián)合線性作用顯著,但各解釋變量間存在共線性而使得它們對(duì)Y的獨(dú)立作用不能分辨,故t檢驗(yàn)不顯著。,2、判明存在多重共線性的范圍,如果存在多重共線性,需進(jìn)一步確定究竟由哪些變量引起。 (1) 判定系數(shù)檢驗(yàn)法 使模型中每一個(gè)解釋變量分別以其余解釋變量為解釋變量進(jìn)行回歸,并計(jì)算相應(yīng)的擬合優(yōu)度。 如果某一種回歸 Xji=1X1i+2X2i+LXLi 的判定系數(shù)較大,說(shuō)明Xj與其他X間存在共線性。,具體可進(jìn)一步對(duì)上述回歸方程作F檢驗(yàn):,式中:Rj2為第j個(gè)解釋變量對(duì)其他解釋變量的回歸方程的決定系數(shù), 若存在較強(qiáng)的共線性,則Rj2較大且接近于1,這時(shí)(1- Rj2 )較小,從而Fj的值較大。 因此,給定顯著性水平,計(jì)算F值,并與相應(yīng)的臨界值比較,來(lái)判定是否存在相關(guān)性。,構(gòu)造如下F統(tǒng)計(jì)量,在模型中排除某一個(gè)解釋變量Xj,估計(jì)模型; 如果擬合優(yōu)度與包含Xj時(shí)十分接近,則說(shuō)明Xj與其它解釋變量之間存在共線性。,另一等價(jià)的檢驗(yàn)是:,(2)逐步回歸法,以Y為被解釋變量,逐個(gè)引入解釋變量,構(gòu)成回歸模型,進(jìn)行模型估計(jì)。 根據(jù)擬合優(yōu)度的變化決定新引入的變量是否獨(dú)立。 如果擬合優(yōu)度變化顯著,則說(shuō)明新引入的變量是一個(gè)獨(dú)立解釋變量; 如果擬合優(yōu)度變化很不顯著,則說(shuō)明新引入的變量與其它變量之間存在共線性關(guān)系。,找出引起多重共線性的解釋變量,將它排除出去。 以逐步回歸法得到最廣泛的應(yīng)用。 注意: 這時(shí),剩余解釋變量參數(shù)的經(jīng)濟(jì)含義和數(shù)值都發(fā)生了變化。,如果模型被檢驗(yàn)證明存在多重共線性,則需要發(fā)展新的方法估計(jì)模型,最常用的方法有三類。,四、克服多重共線性的方法,1、第一類方法:排除引起共線性的變量,2、第二類方法:差分法,時(shí)間序列數(shù)據(jù)、線性模型:將原模型變換為差分模型: Yi=1 X1i+2 X2i+k Xki+ i 可以有效地消除原模型中的多重共線性。,一般講,增量之間的線性關(guān)系遠(yuǎn)比總量之間的線性關(guān)系弱得多。,例 如:,由表中的比值可以直觀地看到,增量的線性關(guān)系弱于總量之間的線性關(guān)系。,進(jìn)一步分析: Y與C(-1)之間的判定系數(shù)為0.9988, Y與C(-1)之間的判定系數(shù)為0.9567,3、第三類方法:減小參數(shù)估計(jì)量的方差,多重共線性的主要后果是參數(shù)估計(jì)量具有較大的方差,所以 采取適當(dāng)方法減小參數(shù)估計(jì)量的方差,雖然沒(méi)有消除模型中的多重共線性,但確能消除多重共線性造成的后果。 例如: 增加樣本容量,可使參數(shù)估計(jì)量的方差減小。,*嶺回歸法(Ridge Regression),70年代發(fā)展的嶺回歸法,以引入偏誤為代價(jià)減小參數(shù)估計(jì)量的方差,受到人們的重視。 具體方法是:引入矩陣D,使參數(shù)估計(jì)量為,其中矩陣D一般選擇為主對(duì)角陣,即 D=aI a為大于0的常數(shù)。,(*),顯然,與未含D的參數(shù)B的估計(jì)量相比,(*)式的估計(jì)量有較小的方差。,六、案例中國(guó)糧食生產(chǎn)函數(shù),根據(jù)理論和經(jīng)驗(yàn)分析,影響糧食生產(chǎn)(Y)的主要因素有: 農(nóng)業(yè)化肥施用量(X1);糧食播種面積(X2) 成災(zāi)面積(X3); 農(nóng)業(yè)機(jī)械總動(dòng)力(X4); 農(nóng)業(yè)勞動(dòng)力(X5),已知中國(guó)糧食生產(chǎn)的相關(guān)數(shù)據(jù),建立中國(guó)糧食生產(chǎn)函數(shù): Y=0+1 X1 +2 X2 +3 X3 +4 X4 +4 X5 +,1、用OLS法估計(jì)上述模型:,R2接近于1; 給定=5%,得F臨界值 F0.05(5,12)=3.11 F=638.4 15.19, 故認(rèn)上述糧食生產(chǎn)的總體線性關(guān)系顯著成立。 但X4 、X5 的參數(shù)未通過(guò)t檢驗(yàn),且符號(hào)不正確,故解釋變量間可能存在多重共線性。,(-0.91) (8.39) (3.32) (-2.81) (-1.45) (-0.14),2、檢驗(yàn)簡(jiǎn)單相關(guān)系數(shù),發(fā)現(xiàn): X1與X4間存在高度相關(guān)性。,列出X1,X2,X3,X4,X5的相關(guān)系數(shù)矩陣:,3、找出最簡(jiǎn)單的回歸形式,可見(jiàn),應(yīng)選第1個(gè)式子為初始的回歸模型。,分別作Y與X1,X2,X4,X5間的回歸:,(25.58) (11.49) R2=0.8919 F=132.1 DW=1.56,(-0.49) (1.14) R2=0.075 F=1.30 DW=0.12,(17.45) (6.68) R2=0.7527 F=48.7 DW=1.11,(-1.04) (2.66) R2=0.3064 F=7.07 DW=0.36,4、逐步回歸,將其他解釋變量分別導(dǎo)入上述初始回歸模型,尋找最佳回歸方程。,回歸方程以Y=f(X1,X2,X3)為最優(yōu):,5、結(jié)論,*七、分部回歸與多重共線性,1、分部回歸法(Partitioned Regression),對(duì)于模型,在滿足解釋變量與隨機(jī)誤差項(xiàng)不相關(guān)的情況下,可以寫出關(guān)于參數(shù)估計(jì)量的方程組:,將解釋變量分為兩部分,對(duì)應(yīng)的參數(shù)也分為兩部分:,如果存在,則有,同樣有,這就是僅以X2作為解釋變量時(shí)的參數(shù)估計(jì)量。,這就是僅以X1作為解釋變量時(shí)的參數(shù)估計(jì)量,2、由分部回歸法導(dǎo)出,如果一個(gè)多元線性模

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論