版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、-1-,知識梳理,考點(diǎn)自測,1.直線與平面平行的判定與性質(zhì),a=,a,b,ab,a,a,a ,=b,a=,ab,-2-,知識梳理,考點(diǎn)自測,2.面面平行的判定與性質(zhì),=,a,b,ab=P, a,b,=a, =b,-3-,知識梳理,考點(diǎn)自測,1.平面與平面平行的三個性質(zhì) (1)兩個平面平行,其中一個平面內(nèi)的任意一條直線平行于另一個平面. (2)夾在兩個平行平面間的平行線段長度相等. (3)兩條直線被三個平行平面所截,截得的對應(yīng)線段成比例. 2.判斷兩個平面平行的三個結(jié)論 (1)垂直于同一條直線的兩個平面平行. (2)平行于同一平面的兩個平面平行. (3)如果一個平面內(nèi)有兩條相交直線分別平行于另一
2、個平面內(nèi)的兩條直線,那么這兩個平面平行.,-4-,知識梳理,考點(diǎn)自測,2,3,4,1,5,1.判斷下列結(jié)論是否正確,正確的畫“”,錯誤的畫“”. (1)若一條直線平行于一個平面內(nèi)的一條直線,則這條直線平行于這個平面.() (2)若一條直線平行于一個平面,則這條直線平行于這個平面內(nèi)的任一條直線.() (3)若直線a與平面內(nèi)無數(shù)條直線平行,則a.() (4)如果一個平面內(nèi)的兩條直線平行于另一個平面,那么這兩個平面平行.() (5)如果兩個平面平行,那么分別在這兩個平面內(nèi)的兩條直線平行或異面.(),答案,-5-,知識梳理,考點(diǎn)自測,2,3,4,1,5,答案,解析,2.設(shè)m,l表示直線,表示平面,若m
3、,則l是lm的() A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件,-6-,知識梳理,考點(diǎn)自測,2,3,4,1,5,3.已知直線l平面,P,則過點(diǎn)P且平行于直線l的直線() A.只有一條,不在平面內(nèi) B.只有一條,且在平面內(nèi) C.有無數(shù)條,不一定在平面內(nèi) D.有無數(shù)條,一定在平面內(nèi),答案,解析,-7-,知識梳理,考點(diǎn)自測,2,3,4,1,5,4.下列命題錯誤的是() A.平面內(nèi)一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行 B.平行于同一個平面的兩個平面平行 C.若兩個平面平行,則位于這兩個平面內(nèi)的直線也互相平行 D.若兩個平面平行,則其中一個平面
4、內(nèi)的直線平行于另一個平面,答案,解析,-8-,知識梳理,考點(diǎn)自測,2,3,4,1,5,5.如圖所示,ABCD-A1B1C1D1是棱長為a的正方體,M,N分別是下底面的棱A1B1,B1C1的中點(diǎn),P是上底面的棱AD上的一點(diǎn),AP= ,過P,M,N的平面交上底面于PQ,Q在CD上,則PQ=.,答案,解析,-9-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,例1在如圖所示的多面體中,DE平面ABCD,AFDE,ADBC,AB=CD,ABC=60,BC=2AD=4DE=4. (1)在AC上求作點(diǎn)P,使PE平面ABF,請寫出作法并說明理由; (2)求三棱錐A-CDE的高.,-10-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,
5、解: (1)取BC的中點(diǎn)G,連接DG,交AC于P,連接PE,此時P為所求作的點(diǎn),如圖所示. 下面給出證明: BC=2AD,BG=AD,又BCAD, 四邊形BGDA為平行四邊形, DGAB,即DPAB, 又AB平面ABF,DP平面ABF, DP平面ABF, AFDE,AF平面ABF,DE平面ABF,DE平面ABF, 又DP平面PDE,DE平面PDE,PDDE=D, 平面ABF平面PDE, 又PE平面PDE, PE平面ABF.,-11-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,-12-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考判斷或證明線面平行的常用方法有哪些? 解題心得1.判斷或證明線面平行的常用方法有:
6、(1)利用線面平行的定義(無公共點(diǎn)); (2)利用線面平行的判定定理(a,b,aba); (3)利用面面平行的性質(zhì)(,aa). 2.證明線面平行往往先證明線線平行,證明線線平行的途徑有:利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì),或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.,-13-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對點(diǎn)訓(xùn)練1 如圖,在四棱錐S-ABCD中,四邊形ABCD為矩形,E為SA的中點(diǎn),SA=SB=2,AB=2 ,BC=3. (1)證明:SC平面BDE; (2)若BCSB,求三棱錐C-BDE的體積.,-14-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(1)證明: 連接AC,設(shè)ACB
7、D=O,連接DE, 四邊形ABCD為矩形, O為AC的中點(diǎn), 在ASC中,E為AS的中點(diǎn), SCOE, 又OE 平面BDE,SC 平面BDE, SC平面BDE.,-15-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(2)解: 過點(diǎn)E作EHAB,垂足為H, BCAB,且BCSB,ABSB=B,BC平面SAB, EH 平面ABS,EHBC, 又EHAB,ABBC=B,EH平面ABCD, 在SAB中,取AB中點(diǎn)M,連接SM, SA=SB,SMAB,SM=1.,-16-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,例2如圖,四棱錐P-ABCD中,底面ABCD為梯形,PD底面ABCD,ABCD,ADCD,E為PD上異于P,D
8、的一點(diǎn). (1)設(shè)平面ABE與PC交于點(diǎn)F,求證:EFCD;,-17-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(1)證明: ABCD,AB平面PDC, 又平面ABE平面PDC=EF, ABEF,EFCD.,-18-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考空間中證明兩條直線平行的常用方法有哪些? 解題心得空間中證明兩條直線平行的常用方法: (1)利用線面平行的性質(zhì)定理,即a,a,=bab. (2)利用平行公理推論:平行于同一直線的兩條直線互相平行. (3)利用垂直于同一平面的兩條直線互相平行.,-19-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對點(diǎn)訓(xùn)練2 如圖,在多面體ABCDEF中,DE平面ABCD,ADBC
9、,平面BCEF平面ADEF=EF,BAD=60,AB=2,DE=EF=1. (1)求證:BCEF; (2)求三棱錐B-DEF的體積.,(1)證明: ADBC,AD 平面ADEF,BC 平面ADEF,BC平面ADEF. 又BC平面BCEF,平面BCEF平面ADEF=EF,BCEF.,-20-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(2)解: 過點(diǎn)B作BHAD于點(diǎn)H. DE平面ABCD,BH平面ABCD,DEBH. AD平面ADEF,DE平面ADEF,ADDE=D, BH平面ADEF. BH是三棱錐B-DEF的高. 在RtABH中,BAD=60,AB=2,故BH= . DE平面ABCD,AD平面ABCD
10、,DEAD. 由(1)知BCEF,且ADBC, ADEF,DEEF.,-21-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,例3 如圖所示,在三棱柱ABC-A1B1C1中,E,F,G,H分別是AB,AC,A1B1,A1C1的中點(diǎn).求證: (1)B,C,H,G四點(diǎn)共面; (2)平面EFA1平面BCHG.,-22-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,證明: (1)G,H分別是A1B1,A1C1的中點(diǎn), GH是A1B1C1的中位線,GHB1C1. 又B1C1BC,GHBC, B,C,H,G四點(diǎn)共面. (2)E,F分別是AB,AC的中點(diǎn), EFBC. EF平面BCHG,BC平面BCHG, EF平面BCHG. A1G
11、EB,四邊形A1EBG是平行四邊形,A1EGB. A1E平面BCHG,GB平面BCHG, A1E平面BCHG. A1EEF=E, 平面EFA1平面BCHG.,-23-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考判斷或證明面面平行的方法有哪些? 解題心得判定面面平行的方法 (1)利用定義:即證兩個平面沒有公共點(diǎn)(不常用). (2)利用面面平行的判定定理(主要方法). (3)利用垂直于同一條直線的兩平面平行(客觀題可用). (4)利用平面平行的傳遞性,即兩個平面同時平行于第三個平面,則這兩個平面平行(客觀題可用).,-24-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對點(diǎn)訓(xùn)練3 如圖所示的幾何體ABCEFD中,A
12、BC,DFE都是等邊三角形,且所在平面平行,四邊形BCED是邊長為2的正方形,且所在平面垂直于平面ABC. (1)求幾何體ABCEFD的體積; (2)證明:平面ADE平面BCF.,-25-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(1)解: 取BC的中點(diǎn)O,ED的中點(diǎn)G,連接AO,OF,FG,AG. AOBC,AO 平面ABC,平面BCED平面ABC, AO平面BCED. 同理FG平面BCED. (2)證明: 由(1)知AOFG,AO=FG, 四邊形AOFG為平行四邊形, AGOF. 又DEBC,DEAG=G,DE 平面ADE,AG 平面ADE,FOBC=O,FO 平面BCF,BC 平面BCF, 平面
13、ADE平面BCF.,-26-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,例4 如圖,已知四棱柱ABCD-A1B1C1D1的底面ABCD為菱形. (1)證明:平面AB1C平面DA1C1; (2)在直線CC1上是否存在點(diǎn)P,使BP平面DA1C1?若存在,確定點(diǎn)P的位置;若不存在,請說明理由.,-27-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(1)證明: 由棱柱ABCD-A1B1C1D1的性質(zhì)知,AB1DC1, AB1 平面DA1C1,DC1 平面DA1C1,AB1平面DA1C1, 同理可證B1C平面DA1C1, 又AB1B1C=B1, 平面AB1C平面DA1C1.,-28-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(2)
14、解: 存在這樣的點(diǎn)P,使BP平面DA1C1. A1B1ABDC, 四邊形A1B1CD為平行四邊形. A1DB1C. 在C1C的延長線上取點(diǎn)P,使C1C=CP,連接BP, B1BC1C,B1BCP, 四邊形BB1CP為平行四邊形, 則BPB1C,BPA1D, BP平面DA1C1.,-29-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,思考解決存在性問題的一般思路是什么? 解題心得解決存在性問題一般先假設(shè)求解的結(jié)果存在,從這個結(jié)果出發(fā),尋找使這個結(jié)論成立的充分條件,若找到了使結(jié)論成立的充分條件,則存在;若找不到使結(jié)論成立的充分條件(出現(xiàn)矛盾),則不存在.而對于探求點(diǎn)的問題,一般是先探求點(diǎn)的位置,多為線段的中點(diǎn)
15、或某個三等分點(diǎn),然后給出符合要求的證明.,-30-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,對點(diǎn)訓(xùn)練4在四棱錐P-ABCD中,底面ABCD為菱形,PAD=PAB,AC交BD于O, (1)求證:平面PAC平面PBD. (2)延長BC至G,使BC=CG,連接PG,DG.試在棱PA上確定一點(diǎn)E,使PG平面BDE,并求此時 的值.,-31-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(1)證明: PAD=PAB,AD=AB,AP=AP, PADPAB,PB=PD, O為BD中點(diǎn),POBD, 底面ABCD為菱形,ACBD, ACPO=O,BD平面PAC, BD平面PBD, 平面PAC平面PBD.,-32-,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,(2)解:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年茂名貨運(yùn)上崗證考試題庫
- 二零二五年個人旅游分期付款協(xié)議書范本3篇
- 二零二五年度按揭中房屋買賣合同(含共有權(quán)分割)2篇
- 物業(yè)管理服務(wù)三方協(xié)議書
- 二零二五年度倉儲貨物搬運(yùn)管理與維護(hù)協(xié)議3篇
- 二零二五年度海鮮餐飲業(yè)海鮮食材供應(yīng)合同2篇
- 二零二五年度健身俱樂部租賃合同附課程安排及會員積分政策3篇
- 二零二五年度生物科技企業(yè)股權(quán)交易與債務(wù)清算合同3篇
- 殯儀館火化委托書
- 二零二五年度電子合同在新能源儲能項目中的應(yīng)用與合同履行協(xié)議2篇
- 2025年湖南出版中南傳媒招聘筆試參考題庫含答案解析
- 2025年度商用廚房油煙機(jī)安裝與維護(hù)服務(wù)合同范本3篇
- 2024年03月恒豐銀行2024年春季招考畢業(yè)生筆試歷年參考題庫附帶答案詳解
- 網(wǎng)絡(luò)安全系統(tǒng)運(yùn)維方案
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之14:“6策劃-6.3變更的策劃”(雷澤佳編制-2025B0)
- 2024年特厚板行業(yè)現(xiàn)狀分析:中國特厚板市場占總銷售量45.01%
- 2025年中國地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招聘19人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 中國兒童重癥監(jiān)護(hù)病房鎮(zhèn)痛和鎮(zhèn)靜治療專家共識2024解讀
- 音樂老師年度總結(jié)5篇
- 2024版商標(biāo)許可使用合同與商標(biāo)授權(quán)協(xié)議3篇
- 學(xué)生學(xué)情分析報告范文
評論
0/150
提交評論