SARS的傳播模型(第九組)_第1頁
SARS的傳播模型(第九組)_第2頁
SARS的傳播模型(第九組)_第3頁
SARS的傳播模型(第九組)_第4頁
SARS的傳播模型(第九組)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、SARS的傳播摘要 SARS(SevereAcuteRespiratorySyndrome,嚴重急性呼吸道綜合癥,俗稱非典型肺炎)是21世紀第一個在世界范圍內(nèi)傳播的傳染病。SARS的爆發(fā)和蔓延給我國的經(jīng)濟發(fā)展和人民生活帶來了很大的影響。為了能定量的研究傳染病的傳播規(guī)律,人們建立了各類模型來預測、控制疾病的發(fā)生發(fā)展。 對于問題1,給出了一個早期指數(shù)模型,它在短期內(nèi)有著計算參數(shù)簡單等合理性與實用性,但卻存在著用短期數(shù)據(jù)分析預測后期疫情發(fā)展趨勢的缺陷?;诖?,我們考慮引進新的參數(shù),建立更優(yōu)的模型。對于問題2我們在早期模型的基礎上進行改進,建立了SIR模型,考慮到疑似患者的變化情況,分別建立了模型一和

2、模型二。對模型進行了合理的理論證明和推導,所給出的理論證明結(jié)果符合模型所給數(shù)據(jù),然后運用相軌分析法以及借助Matlab,excel軟件,對附件中所提供的數(shù)據(jù)進行了擬合和分析。最后根據(jù)模型的分析結(jié)果對衛(wèi)生部門所采取的措施如提前或延后5天采取嚴格的隔離措施,是有數(shù)學依據(jù)的。 對于問題3我們根據(jù)表格所給數(shù)據(jù),使用二次回歸的方法先對03年1月份至12月份的數(shù)據(jù)進行預測,再使用Matlab中的作圖工具箱做出未受SARS的影響圖和受SARS的影響圖,最后進行比較分析,得出結(jié)論:SARS對北京的旅游業(yè)造成影響。關鍵字:SIR模型、Matlab、excel、二次回歸方程、相軌線一、問題重述SARS(非典型肺炎

3、)的爆發(fā)和蔓延給我國的經(jīng)濟發(fā)展和人民生活帶來了很大影響,因此定量地研究傳染病的傳播規(guī)律,對預測和控制傳染病蔓延起著很大的作用。現(xiàn)對SARS 的傳播建立數(shù)學模型,具體要求如下:(1)對附件1所提供的一個早期的模型,評價其合理性和實用性。(2)建立你們自己的模型,說明為什么優(yōu)于附件1中的模型;特別要說明怎樣才能建立一個真正能夠預測以及能為預防和控制提供可靠、足夠的信息的模型,這樣做的困難在哪里?對于衛(wèi)生部門所采取的措施做出評論,如:提前或延后5天采取嚴格的隔離措施,對疫情傳播所造成的影響做出估計。附件2提供的數(shù)據(jù)供參考。(3)收集SARS對經(jīng)濟某個方面影響的數(shù)據(jù),建立相應的數(shù)學模型并進行預測。附件

4、3提供的數(shù)據(jù)供參考。(4)給當?shù)貓罂瘜懸黄ㄋ锥涛?,說明建立傳染病數(shù)學模型的重要性。二、問題分析2.1問題1的分析:對本文提供的一個早期的模型進行評價,主要是分析模型所采用的方法,對其合理性進行肯定,同時要指出其存在的不足。再與實際聯(lián)系,分析該模型的實用性。2.2問題2的分析:根據(jù)對早期模型的分析,對其不足指出進行反思,建立起新的改進模型SIR,首先要對SARS的傳播機理進行深刻的了解和分析;其次是根據(jù)傳染病的特點建立起合適的模型SIR;最后對模型進行求解。2.3問題3的分析: 由1997年至2002年的旅游人數(shù)預測未受SARS影響時2003各月份的旅游人數(shù),并建立二次回歸方程進行回歸分析,接

5、著由實際2003年1月至8月的數(shù)據(jù)預測9月到12月的旅游人數(shù),建立二次回歸方程擬合,比較SARS影響前后的圖像,分析出其對旅游業(yè)的影響。三、 模型假設1、 假設總?cè)丝跀?shù)保持不變,不考慮人口的流動因素2、 忽略當?shù)氐淖匀怀錾屎妥匀凰劳雎省?、 假設被治愈的病人有免疫力,不再被感染。4、 假設移出者包括治愈免疫者和死亡人群四、定義與符號說明:總?cè)丝跀?shù);:健康人占總?cè)丝诘谋壤?;:病人占總?cè)丝诘谋壤唬阂瞥稣哒伎側(cè)丝诘谋壤?;:日接觸率,即每個病人每天接觸的健康的概率;:日治愈率,即每天被治愈的病人的概率:日死亡率, 即每天的死亡人數(shù)占病人總數(shù)的比例:傳染期接觸數(shù),即有;:疑似感染率。即每天感染為疑似

6、病人的比例;:疑似病人占總?cè)丝诘谋壤?;:日轉(zhuǎn)化率,即每天危險群體中的疑似病人被確診為SARS患者的比例。五、模型建立與求解5.1問題1的求解1、早期模型的合理性評價:(1)該模型簡單易行,方便對數(shù)據(jù)的擬合,并容易分析出所建模型與實際數(shù)據(jù)的誤差,能夠具有一定的合理性。(2)對廣東、香港、以及北京的疫情發(fā)展趨勢的比對可以看出因地區(qū)、人口等因素的影響疫情發(fā)展趨勢存在很大的差異。(3)該模型選用公布數(shù)據(jù)直接擬合,從而預測后期疫情發(fā)展趨勢,用短期數(shù)據(jù)來分析,這樣建模具有一定的局限性,缺乏合理性。2、早期模型的實用性評價:(1)該模型反應出一般傳染病模型的發(fā)展趨勢“快速蔓延期、相對穩(wěn)定期、逐漸消亡期”,具

7、有一定的實用性,而該模型對于SARS傳播發(fā)展的初期的研究有參考價值。(2)模型的參數(shù)K的的選擇沒有給出客觀的算法或依據(jù),人工的調(diào)整數(shù)據(jù)具有一定的主觀性。而平均傳染期限L固定在20,顯得片面缺乏可靠性,因為平均傳染期限是會隨著疫情的發(fā)展而變化的。(3)該模型只是考慮了健康者和感染者,并沒有考慮到治愈者能否具有免疫力的情況,實用性不強。5.2問題2的求解5.2.1 SARS的傳播機理:1、總?cè)藬?shù)不變時,將社會人群分為三類,稱為SIR模型。S類:稱為健康人,該類成員沒有染上傳染病,但缺乏免疫能力,可以被染上傳染病.I類:稱為病人,該類成員已經(jīng)染上傳染病,而且可以傳染給S類成員.R類:稱為移出者,R類

8、成員或者是I類成員被嚴格隔離、治愈,或者死亡等.I類成員轉(zhuǎn)化為R類后,立刻失去傳染能力.、分別表示t時刻上述3類成員占城市人口總數(shù)的比例.2、SARS的傳播過程:5.2.2模型的建立 模型一 感染為SARS患者情況由假設可知,每個病人每天可使個健康者變?yōu)椴∪?,因為病人人?shù)為,所以每天共有個健康者被感染,于是就是病人數(shù)的增加率,又因為每天被治愈率為,死亡率為,所以每天有個病人被治愈,有個病人死亡。那么病人的感染為 (1)顯然有: (2) 對于病愈免疫的移出者而言應有: (3)由(1)(2)(3)可得SIR模型如下: (4)模型二 疑似患者的變化情況類似前面的分析,得到疑似患者率模型: (5)5.

9、2.3模型的求解1、參數(shù)的確定:對附表2中的數(shù)據(jù)有excel處理:表格見附件表一當天的病人總數(shù)=隔天的確診病例-當天確診病例 =, =, =0.055076 =0.002443 =0.038183 (處理數(shù)據(jù)見附件1)故可得+=0.0575192、的確定確定 從我們建立的模型是無法得到、的解析解。故求出他們的數(shù)值解。先通過實際統(tǒng)計數(shù)據(jù)算出每一天的、做出它們與時間的函數(shù)圖象圖1, :根據(jù)實際數(shù)據(jù)擬合的圖象(畫圖程序見附件2) 當天病人變化然后我們再對取一組數(shù),分別畫出由通過模型解出的數(shù)值解隨時間變化的圖象圖2,將這組圖象與由實際數(shù)據(jù)所得圖象相比較,調(diào)試。我們發(fā)現(xiàn)當1.5時,理論圖形與實際圖形有最

10、佳的吻合。圖形如下:通過數(shù)值解作出的關于時間t 的變化(畫圖程序見附件3)分析兩個圖形可知,它們的高峰期、緩解期和平穩(wěn)期曲線相當符合,具有相同的發(fā)展趨勢。但是在0,10的SARS初期范圍內(nèi),曲線變化不相同。這主要是因為在4月24日之前,沒有相關數(shù)據(jù)的統(tǒng)計和報道,由于數(shù)據(jù)的不全,根據(jù)邊界值畫出來的曲線與通過數(shù)值解得到的曲線相比較,不能準確反映SARS產(chǎn)生初期時的趨勢,所以邊界值應該去掉,而通過數(shù)值解模擬的曲線可以得到之前的發(fā)展趨勢。并且通過對SARS蔓延期特點的分析,在符合所給數(shù)據(jù)反映的規(guī)律基礎上,還能夠模擬缺乏數(shù)據(jù)的SARS初始狀態(tài),所以曲線是合理的。(2)確定與確定時類似,先根據(jù)實際數(shù)據(jù)畫出

11、圖形(畫圖程序見附件4)實際數(shù)據(jù)圖形然后再對取一組數(shù),分別畫出通過模型解出的數(shù)值解隨時間變化的圖象,將這組圖象與由實際數(shù)據(jù)所得圖象相比較,調(diào)試。發(fā)現(xiàn)當1.0時,理論圖形與實際圖形有最佳的吻合。圖形如下(畫圖程序見附件5): 疑似病人變化在0,10的初期范圍內(nèi),曲線趨勢不同,原因同前。整個曲線反映了疑似患者在SARS的過程中的變化規(guī)律。5.24結(jié)果的分析與驗證(一)討論 的性質(zhì)平面稱為相平面,相軌線在相平面上的定義域為從模型(一)中消去,利用的定義,可得 (6)由(6)式解得 (7)(二)對于合理確定的,我們可以畫出圖,圖形如下:(畫圖程序見附件6) 圖形(相軌線)由于在這個SARS病毒發(fā)展過程

12、中,是變化的,故可以畫出取不同值時的圖形,如下取0.4192,0.2858、0.1858時的圖形,(畫圖程序見附件7)圖形(相軌線)分析(3)式和(7)式,可知:1 不論初始條件,如何,病人終會消失,即SARS最終會被消滅,亦即。從圖形上看,相軌線終將與s軸相交(t充分大)。2 SARS疾病傳染過程分析整個傳染過程,隨著政府和公眾對SARS的重視程度的變化,可知接觸數(shù)隨著治愈率、死亡率和接觸率的不斷變化而變化。(1)在SARS爆發(fā)的初期,由于潛伏期的存在,社會對SARS病毒傳播的速度和危害程度認識不夠,所以政府和公眾沒有引起重視。治愈率和死亡率很小,而接觸率相對較大,所以很小。當,則開始增加,

13、可認為是疾病蔓延階段。(2)當=時,達到最大值 (9)對于我們確定的,可以求出0.8368,可認為是疾病傳染到達了高峰期。(3)當時,單調(diào)減小至零,單調(diào)減小至。這一時期病人比例絕不會增加,傳染病不會蔓延,進入緩解期。3群體免疫和預防根據(jù)對模型的分析,當是傳染病不會蔓延。所以為制止蔓延,除了提高衛(wèi)生和醫(yī)療水平,使閾值1/變大以外,另一個途徑是降低,這可以通過預防接種使群體免疫。第二個途徑通過預防接種使群眾免疫,免疫后就不會被感染上病毒。按照我們?nèi)巳旱姆诸愊到y(tǒng),將免疫人群歸為退出者類,所以免疫人群的出現(xiàn),不與模型的分類系統(tǒng)相矛盾。忽略病人比例的初始值,有=1-,于是SARS不再蔓延的條件可以表示為

14、: (10)所以只要通過群體免疫使初始時刻的移出者比例滿足(10),就可以制止SARS的蔓延。4數(shù)值驗證與估量根據(jù)上面的分析,阻止SARS蔓延有兩種手段,一是提高衛(wèi)生水平和醫(yī)療水平,即降低日接觸率,提高日治愈率,二是群體免疫,即提高移出者比例的初值。我們以最終未感染的健康者的比例和病人比例達到最大值,作為傳染病蔓延程度的度量指標。給定不同的,用()式計算,用(9)式計算1.00.30.30.980.020.03980.34490.60.30.50.980.020.19650.16350.50.51.00.980.020.81220.02000.40.51.250.980.020.91720.0

15、2001.00.30.30.700.020.08400.16850.60.30.50.700.020.30560.05180.50.51.00.700.020.65280.02000.40.51.250.700.020.67550.0200從計算得到的和可以看出:(1)對于一定的,降低,提高,使閾值1/變大,會使變大,變小。于是驗證了群體免疫和預防中提出的提高衛(wèi)生水平和醫(yī)療水平,可以使SARS最終的患者比例縮小,健康群體增加。(2)對于一定的,提高 ,會使變大,變小。所以實行群體免疫,降低受感染的基數(shù),可以有效地減緩SARS蔓延的速度。在(8)式中略去很小的,即有 (11)對于表達式中的參數(shù),

16、已通過前面的參數(shù)分析得出,代入表達式,就可以對t時的患病率做預測,達到了預測的目的,滿足題目的要求。5.25 建立可靠的預測模型存在的困難要建立一個真正能夠預測以及能為預防和控制提供可靠、足夠的信息的模型,還存在著一些困難:1、對于我們所建立的SIR模型,是基于附表二給出的數(shù)據(jù),但是所給的數(shù)據(jù)不夠齊全,只是給出了一個時間段的病情數(shù)據(jù),用來分析整體不夠全面,而且對于所給的數(shù)據(jù)缺乏可靠性。2、對于我們所建立的模型,參數(shù)的選擇是很關鍵的,由于數(shù)據(jù)不全,參數(shù)的選擇也存在著一定的誤差。5.26對衛(wèi)生部措施的評估在模型中,的取值大小能充分反映接觸率的變化。若采取的隔離措施提前T天,那么將相應減小,反之則增

17、加。不妨將的值取為1.3和1.8,作出相應的圖形7和圖8(畫圖程序見附件8)。圖7 疑似病人變化圖8疑似病人變化由以上圖形可見,T對SARS病人的增長有顯著影響,因此,衛(wèi)生部采取的提前或延后5天的隔離措施有其數(shù)學背景和科學依據(jù)。5.3問題3的求解5.31回歸模型的建立與求解:1、根據(jù)附表3中1997年到2002年的旅游人數(shù)預測為受SARS影響時2003年各月份的旅游人數(shù),建立回歸模型得出2003年各月份的預測值為1月2月3月4月5月 6月7月8月9月10月11月 12月15.236.4725.9732.1532.8331.6 29.3336.433.1432.8526.8527.79根據(jù)預測值

18、的散點圖建立二次回歸方程 畫出回歸圖如下(程序見附件9) 由圖可看出:未受SARS影響的情況下,2003年的旅游人數(shù)變化與往年的旅游趨勢相同,先升后降,在夏季達到旅游的高峰。 2、根據(jù)實際2003年1月到8月的數(shù)據(jù)預測9月到12月的旅游人數(shù)1月2月3月4月5月 6月7月8月9月10月11月 12月15.4 17.123.511.61.782.618.816.215.4120.1926.1733.37同樣建立二次回歸方程,得到如下的回歸圖(程序見附件10); 由圖可看出:在SARS的影響下,2003年的旅游趨勢先降后升,低谷恰好是在SARS的高峰期。3、對比SARS影響前后的回歸圖像: 5.32

19、結(jié)果分析: 對比SARS影響前后的回歸圖像可以發(fā)現(xiàn):在一月份左右,SARS對旅游人數(shù)的影響不大,數(shù)據(jù)基本吻合,這是因為疫情剛發(fā)生時沒有引起人們的注意,隨著疫情的蔓延,社會處于敏感期,旅游人數(shù)逐漸減少,在疫情爆發(fā)的高峰期,由圖像可以看到,在六月份左右兩條曲線的差距達到最大,社會處于高度的警界期,出門旅游的人很少,而隨著疫情不斷的得到控制,旅游業(yè)也漸漸回暖,圖像的差距也漸漸縮小。因此,SARS直接影響了旅游人數(shù),對旅游行業(yè)的影響是很大的。六、模型的評價與推廣1、本模型適用預測SARS及其他類似的傳染?。ū热缜萘鞲胁《荆└叻迤诘膩砼R。能夠為預防和控制傳染病提供可靠足夠的信息。2、本模型有利于在當今醫(yī)

20、學領域中,分析各種傳染病或森林、農(nóng)業(yè)、科學上病蟲害的變化規(guī)律,度量傳染病蔓延的程序并探索制止蔓延手段。七、附件附件1日 期已確診病例累計現(xiàn)有疑似病例死亡累計治愈出院累計當天退出者當天病例退出率治愈率死亡率轉(zhuǎn)化率當天病人變化數(shù)4月20日3394021833174310.0394430.0232020.0162414月21日482610254365200.0115380.0057690.0057690.2344261434月22日5886662846166190.0258480.014540.0113090.1591591064月23日6937823555136840.0190060.013158

21、0.0058480.1342711054月24日7748633964127740.0155040.0116280.0038760.093859814月25日877954427398730.0103090.0034360.0068730.1079661034月26日98810934876109900.0101010.002020.0080810.1015551114月27日111412555678310650.00281700.0028170.1003981264月28日1199127559781212100.0099170.0041320.0057850.066667854月29日134713

22、5866831612910.0123930.0054220.0069710.1089841484月30日1440140875901713880.0122480.0072050.0050430.066051935月1日15531415821001814540.012380.006190.006190.0798591135月2日16361468911091115410.0071380.0038940.0032450.05654835月3日1741149396115715920.0043970.0018840.0025130.0703281055月4日18031537100118616790.003

23、5740.0017870.0017870.040338625月5日189715101031211717360.0097930.0074880.0023040.062252945月6日196015231071341018080.0055310.0038720.0016590.041366635月7日204915141101411318850.0068970.0058360.0010610.058785895月8日213614861121521819130.0094090.0083640.0010450.058546875月9日21771425114168919450.0046270.003599

24、0.0010280.028772415月10日222713971161751519740.0075990.0055720.0020260.035791505月11日226514111201863119980.0155160.0110110.0045050.026931385月12日230413781292084120100.0203980.017910.0024880.028302395月13日234713381342441319920.0065260.0040160.002510.032138435月14日23701308139252619970.0030050.0025040.000501

25、0.017584235月15日238813171402571720080.0084660.0079680.0004980.013667185月16日240512651412733820060.0189430.0169490.0019940.013439175月17日242012501453072719820.0136230.0126140.0010090.012155月18日243412501473322019580.0102150.0086820.0015320.0112145月19日243712491503495019450.0257070.023650.0020570.00240235月

26、20日244412251543955418950.0284960.0274410.0010550.00571475月21日244412211564478318530.0447920.0437130.001079005月22日245612051585285617790.0314780.0303540.0011240.009959125月23日246511791605828817480.0503430.0486270.0017160.00763495月24日249011341636674116690.0245660.0221690.0023970.022046255月25日249911051677

27、044416330.0269440.0263320.0006120.00814595月26日250410691687478515970.0532250.050720.0025050.00467755月27日251210051728284115140.0270810.0250990.0019820.0079685月28日25149411758666314760.0426830.0420050.0006780.00212525月29日25178031769287914160.0557910.0550850.0007060.00373635月30日252076017710068513380.0635

28、280.0605380.002990.00394735月31日252174718110873712540.0295060.02950600.00133916月1日252273918111243312170.0271160.0271160006月2日252273418111573211840.0270270.0270270006月3日252272418111897411520.0642360.0642360006月4日252271818112635810780.0538030.0538030006月5日252271618113218410200.0823530.0803920.001961006

29、月6日25227131831403439370.0458910.0458910006月7日25236681831446988930.1097420.1086230.00112006月8日252255018415431107950.1383650.1383650006月9日25224511841653966850.1401460.1372260.002920.00221716月10日25223511861747745900.1254240.1254240006月11日25232571861821565160.1085270.1065890.001938006月12日252315518718766

30、84590.1481480.1481480006月13日2522711871944523910.1329920.1278770.005115006月14日252241891994213390.0619470.0619470006月15日252231892015393170.1230280.1198740.003155006月16日252131902053672780.2410070.2410070006月17日252151902120352110.1658770.1611370.004739006月18日252141912154171760.0965910.0965910006月19日2521

31、31912171181590.1132080.1132080006月20日252131912189421410.2978720.2978720006月21日25212191223126990.2626260.26262600.516月22日25212191225720730.2739730.2739730006月23日25212191227700總數(shù)3.6811993.5248440.1563552.443075平均值0.0575190.0550760.0024430.038173附件2當天病人變化(確定1)t=1:64;z=143 106 105 81 103 111 126 85 148

32、93 113 83 105 62 94 63 89 87 41 50 38 39 43 23 18 17 15 14 3 7 0 12 9 25 9 5 8 2 3 3 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0;p,S=polyfit(t,z,9)Y=polyconf(p,t,S) plot(t,z,o,t,Y),grid,附件3it:clccleara=1.5;b=0.0575;fun2=(t,x)a*x(1)*x(2)-b*x(1);-a*x(1)*x(2);ts=0:1:70;x0=402/14000000,1-402/1400000

33、0;t,x=ode45(fun2,ts,x0); t,x 附件4確定2t=1:65;z=40261066678286395410931255127513581408141514681493153715101523151414861425139714111378133813081317126512501250124912251221120511791134110510691005941803760747739734724718716713668550451351257155714335433222;p,S=polyfit(t,z,9)Y=polyconf(p,t,S) plot(t,z,b-,t

34、,Y,g-),grid,附件5it:clccleara=1;b=0.038183;fun2=(t,x)a*x(1)*x(2)-b*x(1);-a*x(1)*x(2);ts=0:1:70;x0=402/14000000,1-402/14000000;t,x=ode45(fun2,ts,x0); t,x plot(t,x(:,1),grid,附件6相軌線:clcclearfun2=(t,x)1.5*x(1)*x(2)-0.0575*x(1);-1.5*x(1)*x(2);ts=0:1:70;x0=402/14000000,1-402/14000000;t,x=ode45(fun2,ts,x0); t,x plot(x(:,2),x(:,1),grid,附件7改變值s=0.000001:0.001:1;i=1-s+0.419

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論