版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、114直接證明與間接證明基礎(chǔ)送分 提速狂刷練一、選擇題1(2018無錫質(zhì)檢)已知m1,a,b,則以下結(jié)論正確的是()Aab Ba0(m1),即a0,則三個數(shù),()A都大于2 B至少有一個大于2C至少有一個不小于2 D至少有一個不大于2答案C解析由于2226,中至少有一個不小于2.故選C.3若用分析法證明:“設(shè)abc,且abc0,求證:0 Bac0C(ab)(ac)0 D(ab)(ac)0答案C解析ab2ac3a2(ac)2ac3a2a22acc2ac3a202a2acc20(ac)(2ac)0(ac)(ab)0.故選C.4已知a0,b0,如果不等式恒成立,那么m的最大值等于()A10 B9 C
2、8 D7答案B解析a0,b0,2ab0.不等式可化為m(2ab)52.52549,即其最小值為9,當(dāng)且僅當(dāng)ab時(shí),等號成立m9,即m的最大值等于9.故選B.5設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x0時(shí),f(x)單調(diào)遞減,若x1x20,則f(x1)f(x2)的值()A恒為負(fù)值 B恒等于零C恒為正值 D無法確定正負(fù)答案A解析由f(x)是定義在R上的奇函數(shù),且當(dāng)x0時(shí),f(x)單調(diào)遞減,可知f(x)是R上的單調(diào)遞減函數(shù),由x1x20,可知x1x2,f(x1)f(x2)f(x2),則f(x1)f(x2)abcBa2b2c2abbcacCa2b2c22(abbcac)答案C解析c2a2b22abcosC
3、,b2a2c22accosB,a2b2c22bccosA,a2b2c22(a2b2c2)2(abcosCaccosBbccosA)a2b2c22(abcosCaccosBbccosA)N時(shí),恒有|anA|成立,就稱數(shù)列an的極限為A.則四個無窮數(shù)列:(1)n2;n;.其極限為2的共有_個答案2解析對于,|an2|(1)n22|2|(1)n1|,當(dāng)n是偶數(shù)時(shí),|an2|0,當(dāng)n是奇數(shù)時(shí),|an2|4,所以不符合數(shù)列an的極限的定義,即2 不是數(shù)列(1)n2的極限;對于,由|an2|n2|,得2nN時(shí),恒有|an2|,即2不是數(shù)列n的極限;對于,由|an2|1log2,即對于任意給定的正數(shù)(無論多
4、小),總存在正整數(shù) N,使得nN時(shí),恒有|an2|成立,所以2是數(shù)列的極限;對于,由|an2|,即對于任意給定的正數(shù)(無論多小),總存在正整數(shù)N,使得nN時(shí),恒有|an2|1,nN*,若不等式1恒成立,則n的最小值為_答案2解析n1時(shí),結(jié)論不成立n2時(shí),不等式為1,即220,a1,則有意義,不等式恒成立12設(shè)非等腰ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,若,則A,B,C的關(guān)系是_答案2BAC解析,即b2a2c2ac,則有cosB,B60,A,B,C的關(guān)系是成等差數(shù)列,即2BAC.三、解答題13已知函數(shù)f(x)ax(a1)(1)求證:函數(shù)f(x)在(1,)上為增函數(shù);(2)用反證法證明
5、f(x)0沒有負(fù)根證明(1)因?yàn)閒(x)axax1(a1),而函數(shù)yax(a1)和函數(shù)y在(1,)上都是增函數(shù)故函數(shù)f(x)在(1,)上為增函數(shù)(2)假設(shè)函數(shù)f(x)0有負(fù)根x0,即存在x00(x01)滿足f(x0)0,則ax0.又0ax01,所以01,即x02與x00(x01)假設(shè)矛盾故f(x)0沒有負(fù)根14已知數(shù)列an的前n項(xiàng)和為Sn,且Snan1n2,nN*,a12.(1)證明:數(shù)列an1是等比數(shù)列,并求數(shù)列an的通項(xiàng)公式;(2)設(shè)bn(nN*)的前n項(xiàng)和為Tn,證明:Tn0,所以Tn6lg alg blg c.證明證法一:(分析法)lg lg lg lg alg blg clg lg abcabc.因?yàn)閍,b,c是不全相等的正數(shù),所以顯然有abc成立,原不等式得證證法二:(綜合法)因?yàn)閍,b,cR,所以0,0,0.又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銷售人員入職培訓(xùn)與職業(yè)發(fā)展合同
- 公開課《土地的誓言》課件
- 區(qū)塊鏈在體育領(lǐng)域的應(yīng)用案例考核試卷
- 2025版學(xué)校浴室熱水供應(yīng)設(shè)備采購與安裝合同3篇
- 2025版土地使用權(quán)出讓居間合同(高端定制版)3篇
- 2025年博主合作廣告合同
- 2025年度健康養(yǎng)生門面店鋪轉(zhuǎn)讓及服務(wù)項(xiàng)目合作協(xié)議4篇
- 2025年博物文化貸款合同
- 2025年高校外國文教專家教學(xué)與研究合作合同3篇
- 2025年公司增資協(xié)議書模板
- 乳腺癌的綜合治療及進(jìn)展
- 【大學(xué)課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025年八省聯(lián)考高考語文試題真題解讀及答案詳解課件
- 信息安全意識培訓(xùn)課件
- 2024年山東省泰安市初中學(xué)業(yè)水平生物試題含答案
- 2024安全員知識考試題(全優(yōu))
- 采油廠聯(lián)合站的安全管理對策
- 苗醫(yī)行業(yè)現(xiàn)狀分析
- 中國移動各省公司組織架構(gòu)
- 昆明手繪版旅游攻略
- 法律訴訟及咨詢服務(wù) 投標(biāo)方案(技術(shù)標(biāo))
評論
0/150
提交評論